E-CFR

US Electronic Code of Federal Regulations Reading Aid

Title 40 – Protection of Environment–Volume 37

Last updated on April 29th, 2022 at 10:57 pm

Contents hide

Title 40 – Protection of Environment–Volume 37


Part


chapter i – Environmental Protection Agency (Continued)

1060


chapter iv – Environmental Protection Agency and Department of Justice

1400


chapter v – Council on Environmental Quality

1500


chapter vi – Chemical Safety and Hazard Investigation Board

1600


chapter vii – Environmental Protection Agency and Department of Defense; Uniform National Discharge Standards for Vessels of the Armed Forces

1700


chapter viii – Gulf Coast Ecosystem Restoration Council

1800


chapter ix – Federal Permitting Improvement Steering Council

1900

CHAPTER I – ENVIRONMENTAL PROTECTION AGENCY (CONTINUED)

SUBCHAPTER U – AIR POLLUTION CONTROLS

PART 1060 – CONTROL OF EVAPORATIVE EMISSIONS FROM NEW AND IN-USE NONROAD AND STATIONARY EQUIPMENT


Authority:42 U.S.C. 7401-7671q.


Source:73 FR 59298, Oct. 8, 2008, unless otherwise noted.

Subpart A – Overview and Applicability

§ 1060.1 Which products are subject to this part’s requirements?

(a) The standards and other requirements in this part 1060 apply to the fuel lines, fuel tanks, couplings and fittings, and fuel caps used or intended to be used in the following categories of new engines and equipment that are fueled with a volatile liquid fuel (such as gasoline, but not including diesel fuel), and to the equipment in which these components are installed, starting with the model years shown in Table 1 to this section:


(1) Compression-ignition engines we regulate under 40 CFR part 1039. This includes stationary compression-ignition engines we regulate under the provisions of 40 CFR part 1039, as indicated under 40 CFR part 60, subpart IIII. See the evaporative emission standards specified in 40 CFR 1048.105. These engines are considered to be Large SI engines for purposes of this part 1060.


(2) Marine compression-ignition engines we regulate under 40 CFR part 1042. See the evaporative emission standards specified in 40 CFR 1045.112. These engines are considered to be Marine SI engines for purposes of this part 1060.


(3) Marine SI engines we regulate under 40 CFR part 1045. See the evaporative emission standards specified in 40 CFR 1045.112.


(4) Large SI engines we regulate under 40 CFR part 1048. This includes stationary spark-ignition engines subject to standards under 40 CFR parts 1048 or 1054 as indicated in 40 CFR part 60, subpart JJJJ. See the evaporative emission standards specified in 40 CFR 1048.105.


(5) Recreational vehicles and engines we regulate under 40 CFR part 1051 (such as snowmobiles and off-highway motorcycles). This includes highway motorcycles subject to standards under 40 CFR part 1051 as indicated in 40 CFR part 86, subpart E since these motorcycles are considered to be recreational vehicles for purposes of this part 1060. See the evaporative emission standards specified in 40 CFR 1051.110.


(6) Small SI engines we regulate under 40 CFR part 1054. See the evaporative emission standards specified for handheld engines in 40 CFR 1054.110 and for nonhandheld engines in 40 CFR 1054.112.


(7) Portable nonroad fuel tanks are considered portable marine fuel tanks for purposes of this part. Portable nonroad fuel tanks and fuel lines associated with such fuel tanks must therefore meet evaporative emission standards specified in 40 CFR 1045.112, whether or not they are used with marine vessels.


(b) The regulations in this part 1060 apply for new replacement components used with any of the engines or equipment specified in paragraph (a) of this section as described in § 1060.601.


(c) Fuel caps are subject to evaporative emission standards at the point of installation on a fuel tank. When a fuel cap is certified for use with Marine SI engines or Small SI engines under the optional standards of § 1060.103, it becomes subject to all the requirements of this part as if these optional standards were mandatory.


(d) This part does not apply to any diesel-fueled engine or any other engine that does not use a volatile liquid fuel. In addition, this part does not apply to any engines or equipment in the following categories even if they use a volatile liquid fuel:


(1) Light-duty motor vehicles (see 40 CFR part 86).


(2) Heavy-duty motor vehicles and heavy-duty motor vehicle engines (see 40 CFR part 86). This part also does not apply to fuel systems for nonroad engines where such fuel systems are subject to part 86 because they are part of a heavy-duty motor vehicle.


(3) Aircraft engines (see 40 CFR part 87).


(4) Locomotives (see 40 CFR part 1033).


(e) This part 1060 does not apply for fuel lines made wholly of metal.


Table 1 to § 1060.1 – Part 1060 Applicability
a

Equipment

category or

subcategory
Fuel line

permeation
Tank permeation
Diurnal

emissions
Running loss emissions
Marine SI – portable marine fuel tanksJanuary 1, 2009
b
January 1, 2011January 1, 2010Not applicable.
Marine SI – personal watercraftJanuary 1, 2009Model year 2011Model year 2010Not applicable.
Marine SI – other vessels with installed fuel tanksJanuary 1, 2009
b
Model year 2012July 31, 2011Not applicable.
Large SIModel year 2007Not applicableModel year 2007 (includes tank permeation)Model year 2007.
Recreational vehiclesModel year 2008Model year 2008Not applicableNot applicable.
Small SI – handheldModel year 2012
c
Model year 2010
d
Not applicableNot applicable.
Small SI – Class I nonhandheldJanuary 1, 2009Model year 2012Not applicable
e
Model year 2012.
Small SI – Class II nonhandheldJanuary 1, 2009Model year 2011Not applicable
e
Model year 2011.


a Implementation is based on the date of manufacture of the equipment. Where we do not identify a specific date, the emission standards start to apply at the beginning of the model year.


b January 1, 2011 for primer bulbs. Standards phase in for under-cowl fuel lines on outboard engines, by length: 30% in 2010, 60% in 2011, 90% in 2012-2014, 100% in 2015.


c 2013 for small-volume emission families that do not include cold-weather fuel lines.


d 2011 for structurally integrated nylon fuel tanks and 2013 for all small-volume emission families.


e Manufacturers may optionally meet diurnal standards as specified in § 1060.105(e).


[73 FR 59298, Oct. 8, 2008, as amended at 86 FR 34527, June 29, 2021]


§ 1060.5 Do the requirements of this part apply to me?

The requirements of this part are generally addressed to the manufacturers that are subject to this part’s requirements as described in paragraph (a) of this section. The term “you” generally means the manufacturer or manufacturers that are subject to these requirements. Paragraphs (b) through (e) of this section describe which manufacturers may or must certify their products. (Note: § 1060.601(f) allows the certification responsibility to be delegated in certain circumstances.)


(a) Overall responsibilities. Manufacturers of the engines, equipment, and fuel-system components described in § 1060.1 are subject to the standards and other requirements of this part 1060 except as otherwise noted. Multiple manufacturers may be subject to these standards and other requirements. For example, when a Small SI equipment manufacturer buys fuel line manufactured by another person and installs them in its equipment, both the equipment manufacturer and the fuel line manufacturer are subject to the standards and other requirements of this part. The following provisions apply in such cases:


(1) Each person meeting the definition of manufacturer (see § 1060.801) for a product that is subject to the standards and other requirements of this part must comply with such requirements. However, if one person complies with a specific requirement for a given product, then all manufacturers are deemed to have complied with that specific requirement. For example, if a Small SI equipment manufacturer uses fuel lines manufactured and certified by another company, the equipment manufacturer is not required to obtain its own certificate with respect to the fuel line emission standards. Such an equipment manufacturer remains subject to the standards and other requirements of this part. However, where a provision in this part requires a specific manufacturer to comply with certain provisions, this paragraph (a) does not change or modify such a requirement. For example, this paragraph (a) does not allow you to rely on another company to certify instead of you if we specifically require you to certify.


(2) The requirements of subparts C and D of this part apply to the manufacturer that obtains the certificate of conformity. Other manufacturers are required to comply with the requirements of subparts C and D of this part only when we send notification. In our notification, we will specify a reasonable period for complying with the requirements identified in the notice. See § 1060.601 for the applicability of 40 CFR part 1068 to these other manufacturers.


(3) Certificate holders are responsible for meeting all applicable requirements even if other manufacturers are also subject to those requirements.


(b) Marine SI. Certify vessels, engines, and fuel-system components as follows:


(1) Component manufacturers must certify their fuel lines and fuel tanks intended for installation with Marine SI engines and vessels under this part 1060, except as allowed by § 1060.601(f). This includes permeation and diurnal emission standards.


(2) Vessel manufacturers are subject to all the requirements of this part 1060 that apply to Marine SI engines and fuel systems. However, they must certify to the emission standards specified in §§ 1060.102 through 1060.105 only if one or more of the following conditions apply:


(i) Vessel manufacturers must certify fuel system components they install in their vessels if the components are not certified to meet all applicable evaporative emission standards, including both permeation and diurnal standards. This would include vessel manufacturers that make their own fuel tanks. Vessel manufacturers would need to act as component manufacturers to certify under this part 1060.


(ii) Vessel manufacturers must certify their vessels only if they intend to generate or use evaporative emission credits. Vessel manufacturers would certify under part 40 CFR part 1045 using the emission-credit provisions in subpart H of that part to demonstrate compliance with the emission standard.


(3) Engine manufacturers must meet all the requirements of this part 1060 that apply to vessel manufacturers for all fuel-system components they install on their engines. For example, engine manufacturers that install under-cowl fuel lines and fuel tanks must comply with the requirements specified for vessel manufacturers with respect to those components.


(c) Large SI. Certify engines, equipment, and fuel-system components as follows:


(1) Engine manufacturers must certify their engines under 40 CFR part 1048.


(2) Equipment manufacturers and component manufacturers may certify fuel lines and fuel tanks intended for use with Large SI engines under this part 1060.


(d) Recreational vehicles. Certify vehicles, engines and fuel-system components as follows:


(1) Vehicle manufacturers must certify their vehicles under 40 CFR part 1051.


(2) Engine manufacturers must meet all the requirements of 40 CFR part 1051 that apply to vehicle manufacturers for all fuel-system components they install on their engines. For example, engine manufacturers that install fuel-line segments on the engines they ship to vehicle manufacturers must comply with the requirements specified for equipment manufacturers with respect to those components.


(3) Component manufacturers may certify fuel lines and fuel tanks intended for recreational vehicles under this part 1060.


(e) Small SI. Certify engines, equipment, and fuel-system components as follows:


(1) Component manufacturers must certify their fuel lines and fuel tanks intended for Small SI engines and equipment under this part 1060, except as allowed by § 1060.601(f).


(2) Equipment manufacturers must certify fuel system components they install in their equipment if the components are not certified to meet applicable evaporative emission standards. Equipment manufacturers would need to act as component manufacturers to certify fuel-system components under this part 1060.


(3) Engine manufacturers must meet all the requirements of this part 1060 that apply to equipment manufacturers for all fuel-system components they install on their engines. Engine manufacturers that produce Small SI engines with complete fuel systems are considered the equipment manufacturers for those engines under this part 1060.


(4) Equipment manufacturers must certify their equipment and are subject to all the requirements of this part 1060; however, this does not apply for equipment using portable nonroad fuel tanks.


(f) Summary of certification responsibilities. Tables 1 through 3 of this section summarize the certification responsibilities for different kinds of manufacturers as described in paragraphs (b) through (e) of this section. The term “No” as used in the tables means that a manufacturer is not required to obtain a certificate of conformity under paragraphs (b) through (e) of this section. In situations where multiple manufacturers are subject to the standards and other requirements of this part, such a manufacturer must nevertheless certify if the manufacturer who is required to certify under paragraphs (b) through (e) of this section fails to obtain a certificate of conformity.


Table 1 to § 1060.5 – Summary of Engine Manufacturer Evaporative Certification Responsibilities

Equipment type
Is the engine manufacturer required to certify for

evaporative emission standards?
a
Code of Federal

Regulations Cite for

Certification
Marine SINo
Large SIYes40 CFR part 1048.
Recreational vehiclesNo
Small SINo, unless engines are sold with complete fuel systems40 CFR part 1060.


a Fuel lines and fuel tanks that are attached to or sold with engines must be covered by a certificate of conformity.


Table 2 to § 1060.5 – Summary of Equipment Manufacturer Evaporative Certification Responsibilities

Equipment type
Is the equipment manufacturer required to certify for evaporative emission standards?
Code of Federal

Regulations Cite for

Certification
Marine SIYes, but only if vessel manufacturers install uncertified fuel lines or fuel tanks, or they intend to generate or use evaporative emission credits40 CFR part 1060.
a
Large SIAllowed but not required40 CFR part 1060.
Recreational vehiclesYes, even if vehicle manufacturers install certified components40 CFR part 1051.
Small SIYes, unless the equipment uses portable nonroad fuel tanks40 CFR part 1060.
a


a See the exhaust standard-setting part for provisions related to generating or using evaporative emission credits.


Table 3 of § 1060.5 – Summary of Component Manufacturer Certification Responsibilities

Equipment type
Is the component manufacturer required to certify fuel lines and fuel tanks?
Code of Federal

Regulations Cite for

Certification
Marine SIYes, including portable marine fuel tanks and associated fuel lines
a
40 CFR part 1060.
Large SIAllowed but not required40 CFR part 1060.
Recreational vehiclesAllowed but not required40 CFR part 1060.
Small SIYes
a
40 CFR part 1060.


a See § 1060.601 for an allowance to make contractual arrangements with engine or equipment manufacturers instead of certifying.


[73 FR 59298, Oct. 8, 2008, as amended at 80 FR 9115, Feb. 19, 2015; 86 FR 34528, June 29, 2021]


§ 1060.10 How is this part organized?

This part 1060 is divided into the following subparts:


(a) Subpart A of this part defines the applicability of part 1060 and gives an overview of regulatory requirements.


(b) Subpart B of this part describes the emission standards and other requirements that must be met to certify equipment or components under this part. Note that § 1060.110 discusses certain interim requirements and compliance provisions that apply only for a limited time.


(c) Subpart C of this part describes how to apply for a certificate of conformity.


(d) Subpart D of this part describes the requirements related to verifying that products are being produced as described in an approved application for certification.


(e) Subpart E of this part describes the requirements related to verifying that products are meeting the standards in use.


(f) Subpart F of this part describes how to measure evaporative emissions.


(g) Subpart G of this part and 40 CFR part 1068 describe requirements, prohibitions, and other provisions that apply to manufacturers, owners, operators, and all others.


(h) Subpart H of this part describes how to certify your equipment or components for inclusion in an emission averaging program allowed by an exhaust standard-setting part.


(i) Subpart I of this part contains definitions and other reference information.


§ 1060.15 Do any other CFR parts apply to me?

(a) There is a separate part of the CFR that includes exhaust emission requirements for each particular application, as described in § 1060.1(a). We refer to these as the exhaust standard-setting parts. In cases where an exhaust standard-setting part includes evaporative requirements, apply this part 1060 as specified in the exhaust standard-setting part, as follows:


(1) The requirements in the exhaust standard-setting part may differ from the requirements in this part. In cases where it is not possible to comply with both the exhaust standard-setting part and this part, you must comply with the requirements in the exhaust standard-setting part. The exhaust standard-setting part may also allow you to deviate from the procedures of this part for other reasons.


(2) The exhaust standard-setting parts may reference some sections of this part 1060 or may allow or require certification under this part 1060. See the exhaust standard-setting parts to determine what provisions of this part 1060 apply for these equipment types.


(b) The requirements and prohibitions of part 1068 of this chapter apply to everyone, including anyone who manufactures, imports, owns, operates, or services any of the fuel systems subject to this part 1060. Part 1068 of this chapter describes general provisions, including the following areas:


(1) Prohibited acts and penalties for engine manufacturers, equipment manufacturers, and others.


(2) Exclusions and exemptions for certain products.


(3) Importing products.


(4) Defect reporting and recall.


(5) Procedures for hearings.


(c) Other parts of this chapter apply if referenced in this part.


§ 1060.30 Submission of information.

Unless we specify otherwise, send all reports and requests for approval to the Designated Compliance Officer (see § 1060.801). See § 1060.825 for additional reporting and recordkeeping provisions.


[86 FR 34528, June 29, 2021]


Subpart B – Emission Standards and Related Requirements

§ 1060.101 What evaporative emission requirements apply under this part?

Products subject to this part must meet emission standards and related requirements as follows:


(a) Section 1060.102 describes permeation emission control requirements for fuel lines.


(b) Section 1060.103 describes permeation emission control requirements for fuel tanks.


(c) Section 1060.104 describes running loss emission control requirements for fuel systems.


(d) Section 1060.105 describes diurnal emission control requirements for fuel tanks.


(e) The following general requirements apply for components and equipment subject to the emission standards in §§ 1060.102 through 1060.105:


(1) Adjustable parameters. Components or equipment with adjustable parameters must meet all the requirements of this part for any adjustment in the physically adjustable range.


(2) Prohibited controls. The following controls are prohibited:


(i) For anyone to design, manufacture, or install emission control systems so they cause or contribute to an unreasonable risk to public health, welfare, or safety while operating.


(ii) For anyone to design, manufacture, or install emission control systems with features that disable, deactivate, or bypass the emission controls, either actively or passively. For example, you may not include a manual vent that the operator can open to bypass emission controls. You may ask us to allow such features if needed for safety reasons or if the features are fully functional during emission tests described in subpart F of this part.


(3) Emission credits. Equipment manufacturers are allowed to comply with the emission standards in this part using evaporative emission credits only if the exhaust standard-setting part explicitly allows it for evaporative emissions. See the exhaust standard-setting part and subpart H of this part for information about complying with evaporative emission credits. For equipment manufacturers to generate or use evaporative emission credits, components must be certified to a family emission limit, which serves as the standard for those components.


(f) This paragraph (f) specifies requirements that apply to equipment manufacturers subject to requirements under this part, whether or not they are subject to and certify to any of the emission standards in §§ 1060.102 through 1060.105. Equipment manufacturers meeting these requirements will be deemed to be certified as in conformity with the requirements of this paragraph (f) without submitting an application for certification, as follows:


(1) Fuel caps, vents, and carbon canisters. You are responsible for ensuring that proper caps and vents are installed on each new piece of equipment that is subject to emission standards under this part. The following particular requirements apply to equipment that is subject to running loss or diurnal emission standards, including portable marine fuel tanks:


(i) All equipment must have a tethered fuel cap. Fuel caps must also include a visual, audible, or other physical indication that they have been properly sealed.


(ii) You may not add vents unless they are specified in or allowed by the applicable certificates of conformity.


(iii) If the emission controls rely on carbon canisters, they must be installed in a way that prevents exposing the carbon to water or liquid fuel.


(2) Fuel-line fittings. The following requirements apply for fuel-line fittings that will be used with fuel lines that must meet permeation emission standards:


(i) Use good engineering judgment to ensure that all fuel-line fittings will remain securely connected to prevent fuel leakage throughout the useful life of the equipment.


(ii) Fuel lines that are intended to be detachable (such as those for portable marine fuel tanks) must be self-sealing when detached from the fuel tank or engine.


(3) Refueling. For any equipment using fuel tanks that are subject to diurnal or permeation emission standards under this part, you must design and build your equipment such that operators can reasonably be expected to fill the fuel tank without spitback or spillage during the refueling event. The following examples illustrate designs that meet this requirement:


(i) Equipment that is commonly refueled using a portable gasoline container should have a fuel tank inlet that is larger than a typical dispensing spout. The fuel tank inlet should be located so the operator can place the nozzle directly in the fuel tank inlet and see the fuel level in the tank while pouring the fuel from an appropriately sized refueling container (either through the tank wall or the fuel tank inlet). We will deem you to comply with the requirements of this paragraph (f)(3)(i) if you design your equipment to meet applicable industry standards related to fuel tank inlets.


(ii) Marine SI vessels with a filler neck extending to the side of the boat should be designed for automatic fuel shutoff. Alternatively, the filler neck should be designed such that the orientation of the filler neck allows dispensed fuel that collects in the filler neck to flow back into the fuel tank. A filler neck that ends with a horizontal or nearly horizontal segment at the opening where fuel is dispensed would not be an acceptable design.


(g) Components and equipment must meet the standards specified in this part throughout the applicable useful life. Where we do not specify procedures for demonstrating the durability of emission controls, use good engineering judgment to ensure that your products will meet the standards throughout the useful life. The useful life is one of the following values:


(1) The useful life in years specified for the components or equipment in the exhaust standard-setting part.


(2) The useful life in years specified for the engine in the exhaust standard-setting part if the exhaust standards are specified for the engine rather than the equipment and there is no useful life given for components or equipment.


(3) Five years if no useful life is specified in years for the components, equipment, or engines in the exhaust standard-setting part.


§ 1060.102 What permeation emission control requirements apply for fuel lines?

(a) Nonmetal fuel lines must meet permeation requirements as follows:


(1) Marine SI fuel lines, including fuel lines associated with outboard engines or portable marine fuel tanks, must meet the permeation requirements in this section.


(2) Large SI fuel lines must meet the permeation requirements specified in 40 CFR 1048.105.


(3) Fuel lines for recreational vehicles must meet the permeation requirements specified in 40 CFR 1051.110 or in this section.


(4) Small SI fuel lines must meet the permeation requirements in this section, unless they are installed in equipment certified to meet diurnal emission standards under § 1060.105(e).


(b) Different categories of nonroad equipment are subject to different requirements with respect to fuel line permeation. Fuel lines are classified based on measured emissions over the test procedure specified for the class.


(c) The regulations in 40 CFR part 1048 require that fuel lines used with Large SI engines must meet the standards for EPA Low-Emission Fuel Lines. The regulations in 40 CFR part 1054 require that fuel lines used with handheld Small SI engines installed in cold-weather equipment must meet the standards for EPA Cold-Weather Fuel Lines. Unless specified otherwise in this subchapter U, fuel lines used with all other engines and equipment subject to the provisions of this part 1060, including fuel lines associated with outboard engines or portable marine fuel tanks, must meet the standards for EPA Nonroad Fuel Lines.


(d) The following standards apply for each fuel line classification:


(1) EPA Low-Emission Fuel Lines must have permeation emissions at or below 10 g/m
2/day when measured according to the test procedure described in § 1060.510. Fuel lines that comply with this emission standard are deemed to comply with all the emission standards specified in this section.


(2) EPA Nonroad Fuel Lines must have permeation emissions at or below 15 g/m
2/day when measured according to the test procedure described in § 1060.515.


(3) EPA Cold-Weather Fuel Lines must meet the following permeation emission standards when measured according to the test procedure described in § 1060.515:


Table 1 to § 1060.102 – Permeation Standards for EPA Cold-Weather Fuel Lines

Model year
Standard

(g/m
2/day)
2012290
2013275
2014260
2015245
2016 and later225

(e) You may certify fuel lines as follow:


(1) You may certify straight-run fuel lines as sections of any length.


(2) You may certify molded fuel lines in any configuration representing your actual production, subject to the provisions for selecting a worst-case configuration in § 1060.235(b).


(3) You may certify fuel line assemblies as aggregated systems that include multiple sections of fuel line with connectors and fittings. For example, you may certify fuel lines for portable marine fuel tanks as assemblies of fuel hose, primer bulbs, and self-sealing end connections. The length of such an assembly must not be longer than a typical in-use installation and must always be less than 2.5 meters long. You may also certify primer bulbs separately. The standard applies with respect to the total permeation emissions divided by the wetted internal surface area of the assembly. Where it is not practical to determine the actual internal surface area of the assembly, you may assume that the internal surface area per unit length of the assembly is equal to the ratio of internal surface area per unit length of the hose section of the assembly.


[73 FR 59298, Oct. 8, 2008, as amended at 74 FR 8426, Feb. 24, 2009]


§ 1060.103 What permeation emission control requirements apply for fuel tanks?

(a) Fuel tanks must meet permeation requirements as follows:


(1) Marine SI fuel tanks, including engine-mounted fuel tanks and portable marine fuel tanks, must meet the permeation requirements in this section.


(2) Large SI fuel tanks must meet diurnal emission standards as specified in § 1060.105, which includes measurement of permeation emissions. No separate permeation standard applies.


(3) Fuel tanks for recreational vehicles must meet the permeation requirements specified in 40 CFR 1051.110 or in this section.


(4) Small SI fuel tanks must meet the permeation requirements in this section unless they are installed in equipment certified to meet diurnal emission standards under § 1060.105(e).


(b) Permeation emissions from fuel tanks may not exceed 1.5 g/m
2/day when measured at a nominal temperature of 28 °C with the test procedures for tank permeation in § 1060.520. You may also choose to meet a standard of 2.5 g/m
2/day if you perform testing at a nominal temperature of 40 °C under § 1060.520(d).


(c) The exhaust standard-setting part may allow for certification of fuel tanks to a family emission limit for calculating evaporative emission credits as described in subpart H of this part instead of meeting the emission standards in this section.


(d) For purposes of this part, fuel tanks do not include fuel lines that are subject to § 1060.102, petcocks designed for draining fuel, grommets used with fuel lines, or grommets used with other hose or tubing excluded from the definition of “fuel line.” Fuel tanks include other fittings (such as fuel caps, gaskets, and O-rings) that are directly mounted to the fuel tank.


(e) Fuel caps may be certified separately relative to the permeation emission standard in paragraph (b) of this section using the test procedures specified in § 1060.521. Fuel caps certified alone do not need to meet the emission standard. Rather, fuel caps would be certified with a Family Emission Limit, which is used for demonstrating that fuel tanks meet the emission standard as described in § 1060.520(b)(5). For the purposes of this paragraph (e), gaskets or O-rings that are produced as part of an assembly with the fuel cap are considered part of the fuel cap.


(f) Metal fuel tanks that meet the permeation criteria in § 1060.240(d)(2) or use certified nonmetal fuel caps will be deemed to be certified as in conformity with the requirements of this section without submitting an application for certification.


[73 FR 59298, Oct. 8, 2008, as amended at 74 FR 8427, Feb. 24, 2009; 75 FR 23026, Apr. 30, 2010]


§ 1060.104 What running loss emission control requirements apply?

(a) Engines and equipment must meet running loss requirements as follows:


(1) Marine SI engines and vessels are not subject to running loss emission standards.


(2) Large SI engines and equipment must prevent fuel boiling during operation as specified in 40 CFR 1048.105.


(3) Recreational vehicles are not subject to running loss emission standards.


(4) Nonhandheld Small SI engines and equipment that are not used in wintertime equipment must meet running loss requirements described in this section. Handheld Small SI engines and equipment are not subject to running loss emission standards.


(b) You must demonstrate control of running loss emissions in one of the following ways if your engines or equipment are subject to the requirements of this section:


(1) Route running loss emissions into the engine intake system so fuel vapors vented from the tank during engine operation are combusted in the engine. This may involve routing vapors through a carbon canister. If another company has certified the engine with respect to exhaust emissions, state in your application for certification that you have followed the engine manufacturer’s installation instructions.


(2) Use a fuel tank that remains sealed under normal operating conditions. This may involve a bladder or other means to prevent pressurized fuel tanks.


(3) Get an approved executive order or other written approval from the California Air Resources Board showing that your system meets applicable running loss standards in California.


(c) If you are subject to both running loss and diurnal emission standards, use good engineering judgment to ensure that the emission controls are compatible.


[73 FR 59298, Oct. 8, 2008, as amended at 86 FR 34528, June 29, 2021]


§ 1060.105 What diurnal requirements apply for equipment?

(a) Fuel tanks must meet diurnal emission requirements as follows:


(1) Marine SI fuel tanks, including engine-mounted fuel tanks and portable marine fuel tanks, must meet the requirements related to diurnal emissions specified in this section.


(2) Large SI fuel tanks must meet the requirements related to diurnal emissions specified in 40 CFR 1048.105.


(3) Recreational vehicles are not subject to diurnal emission standards.


(4) Small SI fuel tanks are not subject to diurnal emission standards, except as specified in paragraph (e) of this section.


(b) Diurnal emissions from Marine SI fuel tanks may not exceed 0.40 g/gal/day when measured using the test procedures specified in § 1060.525 for general fuel temperatures. An alternative standard of 0.16 g/gal/day applies for fuel tanks installed in nontrailerable boats when measured using the corresponding fuel temperature profile in § 1060.525. Portable marine fuel tanks are not subject to the requirements of this paragraph (b), but must instead comply with the requirements of paragraphs (c) and (d) of this section.


(c) Portable marine fuel tanks and associated fuel-system components must meet the following requirements:


(1) They must be self-sealing when detached from the engines. The tanks may not vent to the atmosphere when attached to an engine, except as allowed under paragraph (c)(2) of this section. An integrated or external manually activated device may be included in the fuel tank design to temporarily relieve pressure before refueling or connecting the fuel tank to the engine. However, the default setting for such a vent must be consistent with the requirement in paragraph (c)(2) of this section.


(2) They must remain sealed up to a positive pressure of 24.5 kPa (3.5 psig); however, they may contain air inlets that open when there is a vacuum pressure inside the tank. Such fuel tanks may not contain air outlets that vent to the atmosphere at pressures below 34.5 kPa (5.0 psig).


(d) Detachable fuel lines that are intended for use with portable marine fuel tanks must have connection points that are self-sealing when not attached to the engine or fuel tank.


(e) Manufacturers of nonhandheld Small SI equipment may optionally meet the diurnal emission standards adopted by the California Air Resources Board. To meet the requirement in this paragraph (e), equipment must be certified to the performance standards specified in Title 13 California Code of Regulations (CCR) 2754(a) based on the applicable requirements specified in CP-902 and TP-902, including the requirements related to fuel caps in Title 13 CCR 2756. Equipment certified under this paragraph (e) does not need to use fuel lines or fuel tanks that have been certified separately. Equipment certified under this paragraph (e) are subject to all the referenced requirements in this paragraph (e) as if these specifications were mandatory.


(f) The following general provisions apply for controlling diurnal emissions:


(1) If you are subject to both running loss and diurnal emission standards, use good engineering judgment to ensure that the emission controls are compatible.


(2) You may not use diurnal emission controls that increase the occurrence of fuel spitback or spillage during in-use refueling. Also, if you use a carbon canister, you must incorporate design features that prevent liquid gasoline from reaching the canister during refueling or as a result of fuel sloshing or fuel expansion.


(3) You must meet the following provisions from ABYC H-25, July 2010 (incorporated by reference in § 1060.810) with respect to portable marine fuel tanks:


(i) Provide information related to the pressure relief method (25.8.2.1 and 25.8.2.1.1).


(ii) Perform system testing (25.10 through 25.10.5).


[73 FR 59298, Oct. 8, 2008, as amended at 74 FR 8427, Feb. 24, 2009; 75 FR 56482, Sept. 16, 2010; 86 FR 34528, June 29, 2021]


§ 1060.120 What emission-related warranty requirements apply?

(a) General requirements. The certifying manufacturer must warrant to the ultimate purchaser and each subsequent purchaser that the new nonroad equipment, including its evaporative emission control system, meets two conditions:


(1) It is designed, built, and equipped so it conforms at the time of sale to the ultimate purchaser with the requirements of this part.


(2) It is free from defects in materials and workmanship that may keep it from meeting these requirements.


(b) Warranty period. Your emission-related warranty must be valid for at least two years from the date the equipment is sold to the ultimate purchaser.


(c) Components covered. The emission-related warranty covers all components whose failure would increase the evaporative emissions, including those listed in 40 CFR part 1068, appendix I, and those from any other system you develop to control emissions. Your emission-related warranty does not need to cover components whose failure would not increase evaporative emissions.


(d) Relationships between manufacturers. (1) The emission-related warranty required for equipment manufacturers that certify equipment must cover all specified components even if another company produces the component.


(2) Where an equipment manufacturer fulfills a warranty obligation for a given component, the component manufacturer is deemed to have also met that obligation.


[73 FR 59298, Oct. 8, 2008, as amended at 86 FR 34528, June 29, 2021]


§ 1060.125 What maintenance instructions must I give to buyers?

Give ultimate purchasers written instructions for properly maintaining and using the emission control system. You may not specify any maintenance more frequently than once per year. For example, if you produce cold-weather equipment that requires replacement of fuel cap gaskets or O-rings, provide clear instructions to the ultimate purchaser, including the required replacement interval.


§ 1060.130 What installation instructions must I give to equipment manufacturers?

(a) If you sell a certified fuel-system component for someone else to install in equipment, give the installer instructions for installing it consistent with the requirements of this part.


(b) Make sure the instructions have the following information:


(1) Include the heading: “Emission-related installation instructions”.


(2) State: “Failing to follow these instructions when installing [IDENTIFY COMPONENT(S)] in a piece of nonroad equipment violates federal law (40 CFR 1068.105(b)), subject to fines or other penalties as described in the Clean Air Act.”


(3) Describe how your certification is limited for any type of application. For example:


(i) For fuel tanks sold without fuel caps, you must specify the requirements for the fuel cap, such as the allowable materials, thread pattern, how it must seal, etc. You must also include instructions to tether the fuel cap as described in § 1060.101(f)(1) if you do not sell your fuel tanks with tethered fuel caps. The following instructions apply for specifying a certain level of emission control for fuel caps that will be installed on your fuel tanks:


(A) If your testing involves a default emission value for fuel cap permeation as specified in § 1060.520(b)(5)(ii)(C), specify in your installation instructions that installed fuel caps must either be certified with a Family Emission Limit at or below 30 g/m2/day, or have gaskets made of certain materials meeting the definition of “low-permeability material” in § 1060.801.


(B) If you certify your fuel tanks based on a fuel cap certified with a Family Emission Limit above 30 g/m2/day, specify in your installation instructions that installed fuel caps must either be certified with a Family Emission Limit at or below the level you used for certifying your fuel tanks, or have gaskets made of certain materials meeting the definition of “low-permeability material” in § 1060.801.


(ii) If your fuel lines do not meet permeation standards specified in § 1060.102 for EPA Low-Emission Fuel Lines, tell equipment manufacturers not to install the fuel lines with Large SI engines that operate on gasoline or another volatile liquid fuel.


(4) Describe instructions for installing components so they will operate according to design specifications in your application for certification. Specify sufficient detail to ensure that the equipment will meet the applicable standards when your component is installed.


(5) If you certify a component with a family emission limit above the emission standard, be sure to indicate that the equipment manufacturer must have a source of credits to offset the higher emissions. Also indicate the applications for which the regulations allow for compliance using evaporative emission credits.


(6) Instruct the equipment manufacturers that they must comply with the requirements of § 1060.202.


(c) You do not need installation instructions for components you install in your own equipment.


(d) Provide instructions in writing or in an equivalent format. For example, you may post instructions on a publicly available Web site for downloading or printing, provided you keep a copy of these instructions in your records. If you do not provide the instructions in writing, explain in your application for certification how you will ensure that each installer is informed of the installation requirements.


[73 FR 59298, Oct. 8, 2008, as amended at 86 FR 34528, June 29, 2021]


§ 1060.135 How must I label and identify the engines and equipment I produce?

The labeling requirements of this section apply for all equipment manufacturers that are required to certify their equipment or use certified fuel-system components. Note that engine manufacturers are also considered equipment manufacturers if they install a complete fuel system on an engine. See § 1060.137 for the labeling requirements that apply separately for fuel lines, fuel tanks, and other fuel-system components.


(a) At the time of manufacture, you must affix a permanent and legible label identifying each engine or piece of equipment. The label must be –


(1) Attached in one piece so it is not removable without being destroyed or defaced.


(2) Secured to a part of the engine or equipment needed for normal operation and not normally requiring replacement.


(3) Durable and readable for the equipment’s entire life.


(4) Written in English.


(5) Readily visible in the final installation. It may be under a hinged door or other readily opened cover. It may not be hidden by any cover attached with screws or any similar designs. Labels on marine vessels (except personal watercraft) must be visible from the helm.


(b) If you hold a certificate under this part for your engine or equipment, the engine or equipment label specified in paragraph (a) of this section must –


(1) Include the heading “EMISSION CONTROL INFORMATION”.


(2) Include your corporate name and trademark. You may identify another company and use its trademark instead of yours if you comply with the branding provisions of 40 CFR 1068.45.


(3) State the date of manufacture [MONTH and YEAR] of the equipment; however, you may omit this from the label if you stamp, engrave, or otherwise permanently identify it elsewhere on the equipment, in which case you must also describe in your application for certification where you will identify the date on the equipment.


(4) State: “THIS [equipment, vehicle, boat, etc.] MEETS U.S. EPA EVAP STANDARDS.”


(5) Identify the certified fuel-system components installed on the equipment as described in this paragraph (b)(5). Establish a component code for each certified fuel-system component, including those certified by other companies. You may use part numbers, certification numbers, or any other unique code that you or the certifying component manufacturer establish. This identifying information must correspond to printing or other labeling on each certified fuel-system component, whether you or the component manufacturer certifies the individual component. You may identify multiple part numbers if your equipment design might include an option to use more than one component design (such as from multiple component manufacturers). Use one of the following methods to include information on the label that identifies certified fuel-system components:


(i) Use the component codes to identify each certified fuel-system component on the label specified in this paragraph (b).


(ii) Identify the emission family on the label using EPA’s standardized designation or an abbreviated equipment code that you establish in your application for certification. Equipment manufacturers that also certify their engines with respect to exhaust emissions may use the same emission family name for both exhaust and evaporative emissions. If you use the provisions of this paragraph (b)(5)(ii), you must identify all the certified fuel-system components and the associated component codes in your application for certification. In this case the label specified in this paragraph (b) may omit the information related to specific fuel-system components.


(c) If you produce equipment without certifying with respect to evaporative emissions, the equipment label specified in paragraph (a) of this section must –


(1) State: “MEETS U.S. EPA EVAP STANDARDS USING CERTIFIED COMPONENTS.”


(2) Include your corporate name.


(d) You may add information to the emission control information label as follows:


(1) You may identify other emission standards that the engine meets or does not meet (such as California standards). You may include this information by adding it to the statement we specify or by including a separate statement.


(2) You may add other information to ensure that the engine will be properly maintained and used.


(3) You may add appropriate features to prevent counterfeit labels. For example, you may include the engine’s unique identification number on the label.


(e) Anyone subject to the labeling requirements in this part 1060 may ask us to approve modified labeling requirements if it is necessary or appropriate. We will approve the request if the alternate label is consistent with the requirements of this part.


[73 FR 59298, Oct. 8, 2008, as amended at 75 FR 23026, Apr. 30, 2010; 86 FR 34529, June 29, 2021]


§ 1060.137 How must I label and identify the fuel-system components I produce?

The requirements of this section apply for manufacturers of fuel-system components subject to emission standards under this part 1060. However, these requirements do not apply if you produce fuel-system components that will be covered by a certificate of conformity from another company under § 1060.601(f). These requirements also do not apply for components you certify if you also certify the equipment in which the component is installed and meet the labeling requirements in § 1060.135.


(a) Label the components identified in this paragraph (a), unless the components are too small to be properly labeled. Unless we approve otherwise, we consider parts large enough to be properly labeled if they have space for 12 characters in six-point font (approximately 2 mm × 12 mm). For these small parts, you may omit the label as long as you identify those part numbers in your maintenance and installation instructions.


(1) All fuel tanks, except for metal fuel tanks that are deemed certified under § 1060.103(f).


(2) Fuel lines. This includes primer bulbs unless they are excluded from the definition of “fuel line” under the standard-setting part. Label primer bulbs separately.


(3) Carbon canisters.


(4) Fuel caps, as described in this paragraph (a)(4). Fuel caps must be labeled if they are separately certified under § 1060.103. If the equipment has a diurnal control system that requires the fuel tank to hold pressure, identify the part number on the fuel cap.


(5) Replaceable pressure-relief assemblies. This does not apply if the component is integral to the fuel tank or fuel cap.


(6) Other components we determine to be critical to the proper functioning of evaporative emission controls.


(b) Label your certified fuel-system components at the time of manufacture. The label must be –


(1) Attached so it is not removable without being destroyed or defaced. This may involve printing directly on the product. For molded products, you may use the mold to apply the label.


(2) Durable and readable for the equipment’s entire life.


(3) Written in English.


(c) Except as specified in paragraph (d) of this section, you must create the label specified in paragraph (b) of this section as follows:


(1) Include your corporate name. You may identify another company instead of yours if you comply with the provisions of 40 CFR 1068.45.


(2) Include EPA’s standardized designation for the emission family.


(3) State: “EPA COMPLIANT”.


(4) Fuel tank labels must identify the FEL, if applicable.


(5) Fuel line labels must identify the applicable permeation level. This may involve any of the following approaches:


(i) Identify the applicable numerical emission standard (such as 15 g/m
2/day).


(ii) Identify the applicable emission standards using EPA classifications (such as EPA Nonroad Fuel Lines).


(iii) Identify the applicable industry standard specification (such as SAE J30 R12).


(6) Fuel line labels must be continuous, with no more than 12 inches before repeating. We will consider labels to be continuous if the space between repeating segments is no longer than that of the repeated information. You may add a continuous stripe or other pattern to help identify the particular type or grade of your products.


(d) You may create an abbreviated label for your components. Such a label may rely on codes to identify the component. The code must at a minimum identify the certification status, your corporate name, and the emission family. For example, XYZ Manufacturing may label its fuel lines as “EPA-XYZ-A15” to designate that their “A15” family was certified to meet EPA’s 15 g/m
2/day standard. If you do this, you must describe the abbreviated label in your application for certification and identify all the associated information specified in paragraph (c) of this section.


(e) You may ask us to approve modified labeling requirements in this section as described in § 1060.135(e).


[73 FR 59298, Oct. 8, 2008, as amended at 75 FR 23026, Apr. 30, 2010; 86 FR 34529, June 29, 2021]


Subpart C – Certifying Emission Families

§ 1060.201 What are the general requirements for obtaining a certificate of conformity?

Manufacturers of engines, equipment, or fuel-system components may need to certify their products with respect to evaporative emission standards as described in §§ 1060.1 and 1060.601. See § 1060.202 for requirements related to certifying with respect to the requirements specified in § 1060.101(f). The following general requirements apply for obtaining a certificate of conformity:


(a) You must send us a separate application for a certificate of conformity for each emission family. A certificate of conformity for equipment is valid starting with the indicated effective date but it is not valid for any production after December 31 of the model year for which it is issued. No certificate will be issued after December 31 of the model year. A certificate of conformity for a component is valid starting with the indicated effective date but it is not valid for any production after the end of the production period for which it is issued.


(b) The application must contain all the information required by this part and must not include false or incomplete statements or information (see § 1060.255).


(c) We may ask you to include less information than we specify in this subpart as long as you maintain all the information required by § 1060.250. For example, equipment manufacturers might use only components that are certified by other companies to meet applicable emission standards, in which case we would not require submission of emission data already submitted by the component manufacturer.


(d) You must use good engineering judgment for all decisions related to your application (see 40 CFR 1068.5).


(e) An authorized representative of your company must approve and sign the application.


(f) See § 1060.255 for provisions describing how we will process your application.


(g) We may specify streamlined procedures for small-volume equipment manufacturers.


§ 1060.202 What are the certification requirements related to the general standards in § 1060.101?

Equipment manufacturers must ensure that their equipment is certified with respect to the general standards specified in § 1060.101(f) as follows:


(a) If § 1060.5 requires you to certify your equipment to any of the emission standards specified in §§ 1060.102 through 1060.105, describe in your application for certification how you will meet the general standards specified in § 1060.101(f).


(b) If § 1060.5 does not require you to certify your equipment to any of the emission standards specified in §§ 1060.102 through 1060.105, your equipment is deemed to be certified with respect to the general standards specified in § 1060.101(f) if you design and produce your equipment to meet those standards.


(1) You must keep records as described in § 1060.210. The other provisions of this part for certificate holders apply only as specified in § 1060.5.


(2) Your equipment is deemed to be certified only to the extent that it meets the general standards in § 1060.101(f). Thus, it is a violation of 40 CFR 1068.101(a)(1) to introduce into U.S. commerce such equipment that does not meet applicable requirements under § 1060.101(f).


(c) Instead of relying on paragraph (b) of this section, you may submit an application for certification and obtain a certificate from us. The provisions of this part apply in the same manner for certificates issued under this paragraph (c) as for any other certificate issued under this part.


§ 1060.205 What must I include in my application?

This section specifies the information that must be in your application, unless we ask you to include less information under § 1060.201(c). We may require you to provide additional information to evaluate your application.


(a) Describe the emission family’s specifications and other basic parameters of the emission controls. Describe how you meet the running loss emission control requirements in § 1060.104, if applicable. Describe how you meet any applicable equipment-based requirements of § 1060.101(e) and (f). State whether you are requesting certification for gasoline or some other fuel type. List each distinguishable configuration in the emission family. For equipment that relies on one or more certified components, identify the EPA-issued emission family name for all the certified components.


(b) Describe the products you selected for testing and the reasons for selecting them.


(c) Describe the test equipment and procedures that you used, including any special or alternate test procedures you used (see § 1060.501).


(d) List the specifications of the test fuel to show that it falls within the required ranges specified in subpart F of this part.


(e) State the equipment applications to which your certification is limited. For example, if your fuel system meets the emission requirements of this part applicable only to handheld Small SI equipment, state that the requested certificate would apply only for handheld Small SI equipment.


(f) Identify the emission family’s useful life.


(g) Include the maintenance instructions you will give to the ultimate purchaser of each new nonroad engine (see § 1060.125).


(h) Include the emission-related installation instructions you will provide if someone else will install your component in a piece of nonroad equipment (see § 1060.130).


(i) Describe your emission control information label (see §§ 1060.135 and 1060.137).


(j) Identify the emission standards or FELs to which you are certifying the emission family.


(k) Present emission data to show your products meet the applicable emission standards. Note that §§ 1060.235 and 1060.240 allow you to submit an application in certain cases without new emission data.


(l) State that your product was tested as described in the application (including the test procedures, test parameters, and test fuels) to show you meet the requirements of this part. If you did not do the testing, identify the source of the data.


(m) Report all valid test results. Also indicate whether there are test results from invalid tests or from any other tests of the emission-data unit, whether or not they were conducted according to the test procedures of subpart F of this part. We may require you to report these additional test results. We may ask you to send other information to confirm that your tests were valid under the requirements of this part.


(n) Unconditionally certify that all the products in the emission family comply with the requirements of this part, other referenced parts of the CFR, and the Clean Air Act.


(o) Include good-faith estimates of U.S.-directed production volumes. Include a justification for the estimated production volumes if they are substantially different than actual production volumes in earlier years for similar models.


(p) Include other applicable information, such as information required by other subparts of this part.


(q) Name an agent for service located in the United States. Service on this agent constitutes service on you or any of your officers or employees for any action by EPA or otherwise by the United States related to the requirements of this part.


[73 FR 59298, Oct. 8, 2008, as amended at 86 FR 34529, June 29, 2021]


§ 1060.210 What records should equipment manufacturers keep if they do not apply for certification?

If you are an equipment manufacturer that does not need to obtain a certificate of conformity for your equipment as described in § 1060.5, you must keep the records specified in this section to document compliance with applicable requirements. We may review these records at any time. If we ask, you must send us these records within 30 days. You must keep these records for eight years from the end of the model year.


(a) Identify your equipment models and the annual U.S.-directed production volumes for each model.


(b) Identify the emission family names of the certificates that will cover your equipment, the part numbers of those certified components, and the names of the companies that hold the certificates. You must be able to identify this information for each piece of equipment you produce.


(c) Describe how you comply with any emission-related installation instructions, labeling requirements, and the general standards in § 1060.101(e) and (f).


§ 1060.225 How do I amend my application for certification?

Before we issue a certificate of conformity, you may amend your application to include new or modified configurations, subject to the provisions of this section. After we have issued your certificate of conformity, you may send us an amended application requesting that we include new or modified configurations within the scope of the certificate, subject to the provisions of this section. You must amend your application if any changes occur with respect to any information included in your application.


(a) You must amend your application before you take any of the following actions:


(1) Add a configuration to an emission family. In this case, the configuration added must be consistent with other configurations in the emission family with respect to the criteria listed in § 1060.230.


(2) Change a configuration already included in an emission family in a way that may affect emissions, or change any of the components you described in your application for certification. This includes production and design changes that may affect emissions any time during the equipment’s lifetime.


(3) Modify an FEL for an emission family as described in paragraph (f) of this section. Note however that component manufacturers may not modify an FEL for their products unless they submit a separate application for a new emission family.


(b) To amend your application for certification, send the following relevant information to the Designated Compliance Officer.


(1) Describe in detail the addition or change in the configuration you intend to make.


(2) Include engineering evaluations or data showing that the amended emission family complies with all applicable requirements in this part. You may do this by showing that the original emission data are still appropriate for showing that the amended family complies with all applicable requirements in this part.


(3) If the original emission data for the emission family are not appropriate to show compliance for the new or modified configuration, include new test data showing that the new or modified configuration meets the requirements of this part.


(4) Include any other information needed to make your application correct and complete.


(c) We may ask for more test data or engineering evaluations. Within 30 days after we make our request, you must provide the information or describe your plan for providing it in a timely manner.


(d) For emission families already covered by a certificate of conformity, we will determine whether the existing certificate of conformity covers your new or modified configuration. You may ask for a hearing if we deny your request (see § 1060.820).


(e) For emission families already covered by a certificate of conformity, you may start producing the new or modified configuration anytime after you send us your amended application and before we make a decision under paragraph (d) of this section. However, if we determine that the affected configurations do not meet applicable requirements, we will notify you to cease production of the configurations and may require you to recall the equipment at no expense to the owner. Choosing to produce equipment under this paragraph (e) is deemed to be consent to recall all equipment that we determine do not meet applicable emission standards or other requirements and to remedy the nonconformity at no expense to the owner. If you do not provide information we request under paragraph (c) of this section within 30 days after we request it, you must stop producing the new or modified equipment.


(f) If you hold a certificate of conformity for equipment and you have certified the fuel tank that you install in the equipment, you may ask us to approve a change to your FEL after the start of production. The changed FEL may not apply to equipment you have already introduced into U.S. commerce, except as described in this paragraph (f). If we approve a changed FEL after the start of production, you must identify the date or serial number for applying the new FEL. If you identify this by month and year, we will consider that a lowered FEL applies on the last day of the month and a raised FEL applies on the first day of the month. You may ask us to approve a change to your FEL in the following cases:


(1) You may ask to raise your FEL for your emission family at any time. In your request, you must show that you will still be able to meet the emission standards as specified in the exhaust standard-setting part. If you amend your application by submitting new test data to include a newly added or modified fuel tank configuration, as described in paragraph (b)(3) of this section, use the appropriate FELs with corresponding production volumes to calculate your production-weighted average FEL for the model year. In all other circumstances, you must use the higher FEL for the entire family to calculate your production-weighted average FEL under subpart H of this part.


(2) You may ask to lower the FEL for your emission family only if you have test data from production units showing that emissions are below the proposed lower FEL. The lower FEL applies only for units you produce after we approve the new FEL. Use the appropriate FELs with corresponding production volumes to calculate your production-weighted average FEL for the model year.


(g) You may produce equipment or components as described in your amended application for certification and consider those equipment or components to be in a certified configuration if we approve a new or modified configuration during the model year or production period under paragraph (d) of this section. Similarly, you may modify in-use products as described in your amended application for certification and consider those products to be in a certified configuration if we approve a new or modified configuration at any time under paragraph (d) of this section. Modifying a new or in-use product to be in a certified configuration does not violate the tampering prohibition of 40 CFR 1068.101(b)(1), as long as this does not involve changing to a certified configuration with a higher family emission limit.


(h) Component manufacturers may not change an emission family’s FEL under any circumstances. Changing the FEL would require submission of a new application for certification.


[73 FR 59298, Oct. 8, 2008, as amended at 86 FR 34529, June 29, 2021]


§ 1060.230 How do I select emission families?

(a) For purposes of certification, divide your product line into families of equipment (or components) that are expected to have similar emission characteristics throughout their useful life.


(b) Group fuel lines into the same emission family if they are the same in all the following aspects:


(1) Type of material including barrier layer.


(2) Production method.


(3) Types of connectors and fittings (material, approximate wall thickness, etc.) for fuel line assemblies certified together.


(c) Group fuel tanks (or fuel systems including fuel tanks) into the same emission family if they are the same in all the following aspects:


(1) Type of material, including any pigments, plasticizers, UV inhibitors, or other additives that are expected to affect control of emissions.


(2) Production method.


(3) Relevant characteristics of fuel cap design for fuel systems subject to diurnal emission requirements.


(4) Gasket material.


(5) Emission control strategy.


(6) Family emission limit, if applicable.


(d) Group other fuel-system components and equipment into the same emission family if they are the same in all the following aspects:


(1) Emission control strategy and design.


(2) Type of material (such as type of charcoal used in a carbon canister). This paragraph (d)(2) does not apply for materials that are unrelated to emission control performance.


(3) The fuel systems meet the running loss emission standard based on the same type of compliance demonstration specified in § 1060.104(b), if applicable.


(e) You may subdivide a group of equipment or components that are identical under paragraphs (b) through (d) of this section into different emission families if you show the expected emission characteristics are different during the useful life.


(f) In unusual circumstances, you may group equipment or components that are not identical with respect to the things listed in paragraph (b) through (d) of this section into the same emission family if you show that their emission characteristics during the useful life will be similar. The provisions of this paragraph (f) do not exempt any engines or equipment from meeting all the applicable standards and requirements in subpart B of this part.


(g) Emission families may include components used in multiple equipment categories. Such families are covered by a single certificate. For example, a single emission family may contain fuel tanks used in both Small SI equipment and Marine SI vessels.


[73 FR 59298, Oct. 8, 2008, as amended at 86 FR 34529, June 29, 2021]


§ 1060.235 What testing requirements apply for certification?

This section describes the emission testing you must perform to show compliance with the emission standards in subpart B of this part.


(a) Select an emission-data unit from each emission family for testing. If you are certifying with a family emission limit, you must test at least three emission-data units. In general, you must test a preproduction product that will represent actual production. However, for fuel tank permeation, you may test a tank with standardized geometry provided that it is made of the same material(s) and appropriate wall thickness. In general, the test procedures specify that components or systems be tested rather than complete equipment. For example, to certify your family of Small SI equipment, you would need to test a sample of fuel line for permeation emissions and a fuel tank for permeation emissions. Note that paragraph (e) of this section and § 1060.240 allow you in certain circumstances to certify without testing an emission-data unit from the emission family. Select test components that are most likely to exceed (or have emissions nearer to) the applicable emission standards as follows:


(1) For fuel tanks, consider the following factors associated with higher emission levels:


(i) Smallest average wall thickness (or barrier thickness, as appropriate).


(ii) Greatest extent of pinch welds for tanks using barrier technologies.


(iii) Greatest relative area of gasket material, especially if gaskets are made of high-permeation materials.


(2) For fuel lines, consider the following factors associated with higher emission levels:


(i) Smallest average wall thickness (or barrier thickness, as appropriate).


(ii) Smallest inner diameter.


(b) Test your products using the procedures and equipment specified in subpart F of this part.


(c) You may not do maintenance on emission-data units.


(d) We may perform confirmatory testing by measuring emissions from any of your products from the emission family, as follows:


(1) You must supply your products to us if we choose to perform confirmatory testing. We may require you to deliver your test articles to a facility we designate for our testing.


(2) If we measure emissions on one of your products, the results of that testing become the official emission results for the emission family. Unless we later invalidate these data, we may decide not to consider your data in determining if your emission family meets applicable requirements in this part.


(e) You may ask to use carryover emission data from a previous production period instead of doing new tests, but only if all the following are true:


(1) The emission family from the previous production period differs from the current emission family only with respect to production period, items identified in § 1060.225(a), or other characteristics unrelated to emissions. We may waive the criterion in this paragraph (e)(1) for differences we determine not to be relevant.


(2) The emission-data unit from the previous production period remains the appropriate emission-data unit under paragraph (b) of this section. For example, you may not carryover emission data for your family of nylon fuel tanks if you have added a thinner-walled fuel tank than was tested previously.


(3) The data show that the emission-data unit would meet all the requirements that apply to the emission family covered by the application for certification.


(f) We may require you to test another unit of the same or different configuration in addition to the unit(s) tested under paragraph (b) of this section.


(g) If you use an alternate test procedure under § 1060.505, and later testing shows that such testing does not produce results that are equivalent to the procedures specified in this part, we may reject data you generated using the alternate procedure.


[73 FR 59298, Oct. 8, 2008, as amended at 86 FR 34529, June 29, 2021]


§ 1060.240 How do I demonstrate that my emission family complies with evaporative emission standards?

(a) For purposes of certification, your emission family is considered in compliance with an evaporative emission standard in subpart B of this part if you do either of the following:


(1) You have test results showing a certified emission level from the fuel tank or fuel line (as applicable) in the family are at or below the applicable standard.


(2) You comply with design specifications as specified in paragraphs (d) through (f) of this section.


(b) Your emission family is deemed not to comply if any fuel tank or fuel line representing that family has an official emission result above the standard.


(c) Round each official emission result to the same number of decimal places as the emission standard.


(d) You may demonstrate for certification that your emission family complies with the fuel tank permeation standards specified in § 1060.103 with any of the following control technologies:


(1) A coextruded high-density polyethylene fuel tank with a continuous ethylene vinyl alcohol barrier layer (with not more than 40 molar percent ethylene) making up at least 2 percent of the fuel tank’s overall wall thickness with any of the following gasket and fuel-cap characteristics:


(i) No nonmetal gaskets or fuel caps.


(ii) All nonmetal gaskets and fuel caps made from low-permeability materials.


(iii) Nonmetal gaskets and fuel caps that are not made from low-permeability materials up to the following limits:


(A) Gaskets with a total exposed surface area less than 0.25 percent of the total inside surface area of the fuel tank. For example, a fuel tank with an inside surface area of 0.40 square meters may use high-permeation gasket material representing a surface area of up to 1,000 mm
2 (0.25% ×
1/100 × 0.40 m
2 × 1,000,000 mm
2/m
2). Determine surface area based on the amount of material exposed to liquid fuel.


(B) Fuel caps directly mounted to the fuel tank with the surface area of the fuel cap less than 3.0 percent of the total inside surface area of the fuel tank. Use the smallest inside cross-sectional area of the opening on which the cap is mounted as the fuel cap’s surface area.


(2) A metal fuel tank with the gasket and fuel-cap characteristics meeting the specifications in paragraphs (d)(1)(i) through (iii) of this section.


(e) You may demonstrate for certification that your emission family complies with the diurnal emission standards specified in § 1060.105 with any of the following control technologies:


(1) A Marine SI fuel tank sealed up to a positive pressure of 7.0 kPa (1.0 psig); however, the fuel tank may contain air inlets that open when there is a vacuum pressure inside the tank.


(2) A Marine SI fuel tank equipped with a passively purged carbon canister that meets the requirements of this paragraph (e)(2). The carbon must adsorb no more than 0.5 grams of water per gram of carbon at 90% relative humidity and a temperature of 25±5 °C. The carbon granules must have a minimum mean diameter of 3.1 mm based on the procedures in ASTM D2862 (incorporated by reference in § 1060.810). The carbon must also pass a dust attrition test based on ASTM D3802 (incorporated by reference in § 1060.810), except that hardness is defined as the ratio of mean particle diameter before and after the test and the procedure must involve twenty
1/2-inch steel balls and ten
3/4-inch steel balls. Use good engineering judgment in the structural design of the carbon canister. The canister must have a volume compensator or some other device to prevent the carbon pellets from moving within the canister as a result of vibration or changing temperature. The canister must have a minimum working capacity as follows:


(i) You may use the measurement procedures specified by the California Air Resources Board in Attachment 1 to TP-902 to show that canister working capacity is least 3.6 grams of vapor storage capacity per gallon of nominal fuel tank capacity (or 1.4 grams of vapor storage capacity per gallon of nominal fuel tank capacity for fuel tanks used in nontrailerable boats).


(ii) You may produce canisters with a minimum carbon volume of 0.040 liters per gallon of nominal fuel tank capacity (or 0.016 liters per gallon for fuel tanks used in nontrailerable boats). The carbon canister must have a minimum effective length-to-diameter ratio of 3.5 and the vapor flow must be directed with the intent of using the whole carbon bed. The carbon must have a minimum carbon working capacity of 90 grams per liter.


(f) We may establish additional design certification options where we find that new test data demonstrate that the use of a different technology design will ensure compliance with the applicable emission standards.


(g) You may not establish a family emission limit below the emission standard for components certified based on design specifications under this section even if actual emission rates are much lower.


[73 FR 59298, Oct. 8, 2008, as amended at 86 FR 34530, June 29, 2021]


§ 1060.250 What records must I keep?

(a) Organize and maintain the following records:


(1) A copy of all applications and any summary information you send us.


(2) Any of the information we specify in § 1060.205 that you were not required to include in your application.


(3) A detailed history of each emission-data unit. For each emission data unit, include all of the following:


(i) The emission-data unit’s construction, including its origin and buildup, steps you took to ensure that it represents production equipment, any components you built specially for it, and all the components you include in your application for certification.


(ii) All your emission tests (valid and invalid), including the date and purpose of each test and documentation of test parameters described in subpart F of this part.


(iii) All tests to diagnose emission control performance, giving the date and time of each and the reasons for the test.


(iv) Any other significant events.


(4) Annual production figures for each emission family divided by assembly plant.


(5) Keep a list of equipment identification numbers for all the equipment you produce under each certificate of conformity.


(b) Keep required data from emission tests and all other information specified in this section for eight years after we issue your certificate. If you use the same emission data or other information for a later model year, the eight-year period restarts with each year that you continue to rely on the information.


(c) Store these records in any format and on any media as long as you can promptly send us organized, written records in English if we ask for them. You must keep these records readily available. We may review them at any time.


[73 FR 59298, Oct. 8, 2008, as amended at 86 FR 34530, June 29, 2021]


§ 1060.255 What decisions may EPA make regarding a certificate of conformity?

(a) If we determine an application is complete and shows that the emission family meets all the requirements of this part and the Clean Air Act, we will issue a certificate of conformity for the emission family for that production period. We may make the approval subject to additional conditions.


(b) We may deny an application for certification if we determine that an emission family fails to comply with emission standards or other requirements of this part or the Clean Air Act. We will base our decision on all available information. If we deny an application, we will explain why in writing.


(c) In addition, we may deny your application or suspend or revoke a certificate of conformity if you do any of the following:


(1) Refuse to comply with any testing or reporting requirements in this part.


(2) Submit false or incomplete information. This includes doing anything after submitting an application that causes submitted information to be false or incomplete.


(3) Cause any test data to become inaccurate.


(4) Deny us from completing authorized activities (see 40 CFR 1068.20). This includes a failure to provide reasonable assistance.


(5) Produce equipment or components for importation into the United States at a location where local law prohibits us from carrying out authorized activities.


(6) Fail to supply requested information or amend an application to include all equipment or components being produced.


(7) Take any action that otherwise circumvents the intent of the Clean Air Act or this part.


(d) We may void a certificate of conformity if you fail to keep records, send reports, or give us information as required under this part or the Clean Air Act. Note that these are also violations of 40 CFR 1068.101(a)(2).


(e) We may void a certificate of conformity if we find that you intentionally submitted false or incomplete information. This includes doing anything after submitting an application that causes submitted information to be false or incomplete.


(f) If we deny an application or suspend, revoke, or void a certificate of conformity, you may ask for a hearing (see § 1060.820).


[86 FR 34530, June 29, 2021]


Subpart D – Production Verification Testing

§ 1060.301 Manufacturer testing.

(a) Using good engineering judgment, you must evaluate production samples to verify that equipment or components you produce are as specified in the certificate of conformity. This may involve testing using certification procedures or other measurements.


(b) You must give us records to document your evaluation if we ask for them.


§ 1060.310 Supplying products to EPA for testing.

Upon our request, you must supply a reasonable number of production samples to us for verification testing.


Subpart E – In-use Testing

§ 1060.401 General Provisions.

We may perform in-use testing of any equipment or fuel-system components subject to the standards of this part.


Subpart F – Test Procedures

§ 1060.501 General testing provisions.

(a) This subpart is addressed to you as a certifying manufacturer but it applies equally to anyone who does testing for you.


(b) Unless we specify otherwise, the terms “procedures” and “test procedures” in this part include all aspects of testing, including the equipment specifications, calibrations, calculations, and other protocols and procedural specifications needed to measure emissions.


(c) The specification for gasoline to be used for testing is given in 40 CFR 1065.710(b) or (c). Use the grade of gasoline specified for general testing. For testing specified in this part that requires blending gasoline and ethanol, blend this grade of neat gasoline with fuel-grade ethanol meeting the specifications of ASTM D4806 (incorporated by reference in § 1060.810). You do not need to measure the ethanol concentration of such blended fuels and may instead calculate the blended composition by assuming that the ethanol is pure and mixes perfectly with the base fuel. For example, if you mix 10.0 liters of fuel-grade ethanol with 90.0 liters of gasoline, you may assume the resulting mixture is 10.0 percent ethanol. You may use more pure or less pure ethanol if you can demonstrate that it will not affect your ability to demonstrate compliance with the applicable emission standards in subpart B of this part. Note that unless we specify otherwise, any references to gasoline-ethanol mixtures containing a specified ethanol concentration means mixtures meeting the provisions of this paragraph (c). The following table summarizes test fuel requirements for the procedures specified in this subpart:


Table 1 to § 1060.501 – Summary of Test Fuel Requirements

Procedure
Reference
Test Fuel
a
Low-Emission Fuel Lines§ 1060.510CE10.
Nonroad Fuel Lines§ 1060.515CE10
b.
Cold-Weather Fuel Lines§ 1060.515Splash-blended E10.
Fuel tank and fuel cap permeation§ 1060.520Splash-blended E10; manufacturers may instead use CE10.
Diurnal§ 1060.525E0.


a Pre-mixed gasoline blends are specified in 40 CFR 1065.710(b). Splash-blended gasoline blends are a mix of neat gasoline specified in 40 CFR 1065.710(c) and fuel-grade ethanol.


b Different fuel specifications apply for fuel lines tested under 40 CFR part 1051 for recreational vehicles, as described in 40 CFR 1051.501.


(d) Accuracy and precision of all temperature measurements must be ±1.0 °C or better. If you use multiple sensors to measure differences in temperature, calibrate the sensors so they will be within 0.5 °C of each other when they are in thermal equilibrium at a point within the range of test temperatures (use the starting temperature in Table 1 to § 1060.525 unless this is not feasible).


(e) Accuracy and precision of mass balances must be sufficient to ensure accuracy and precision of two percent or better for emission measurements for products at the maximum level allowed by the standard. The readability of the display may not be coarser than half of the required accuracy and precision. Examples are shown in the following table for a digital readout:



Example #1
Example #2
Example #3
Applicable standard1.5 g/m
2/day
1.5 g/m
2/day
15 g/m
2/day.
Internal surface area1.15 m
2
0.47 m
2
0.015 m
2.
Length of test14.0 days14.0 days14.1 days.
Maximum allowable mass change24.15 g9.87 g3.173 g.
Required accuracy and precision±0.483 g or better±0.197 g or better±0.0635 g or better.
Required readability0.1 g or better0.1 g or better0.01 g or better.

[73 FR 59298, Oct. 8, 2008, as amended at 74 FR 8427, Feb. 24, 2009; 86 FR 34530, June 29, 2021]


§ 1060.505 Other procedures.

(a) Your testing. The procedures in this part apply for all testing you do to show compliance with emission standards, with certain exceptions listed in this section.


(b) Our testing. These procedures generally apply for testing that we do to determine if your equipment complies with applicable emission standards. We may perform other testing as allowed by the Clean Air Act.


(c) Exceptions. We may allow or require you to use procedures other than those specified in this part in the following cases:


(1) You may request to use special procedures if your equipment cannot be tested using the specified procedures. We will approve your request if we determine that it would produce emission measurements that represent in-use operation and we determine that it can be used to show compliance with the requirements of the standard-setting part.


(2) You may ask to use emission data collected using other procedures, such as those of the California Air Resources Board or the International Organization for Standardization. We will approve this only if you show us that using these other procedures does not affect your ability to show compliance with the applicable emission standards. This generally requires emission levels to be far enough below the applicable emission standards so any test differences do not affect your ability to state unconditionally that your equipment will meet all applicable emission standards when tested using the specified test procedures.


(3) You may request to use alternate procedures that are equivalent to the specified procedures, or procedures that are more accurate or more precise than the specified procedures. We may perform tests with your equipment using either the approved alternate procedures or the specified procedures. See 40 CFR 1065.12 for a description of the information that is generally required for such alternate procedures.


(4) The test procedures are specified for gasoline-fueled equipment. If your equipment will use another volatile liquid fuel instead of gasoline, use a test fuel that is representative of the fuel that will be used with the equipment in use. You may ask us to approve other changes to the test procedures to reflect the effects of using a fuel other than gasoline.


(d) Approval. If we require you to request approval to use other procedures under paragraph (c) of this section, you may not use them until we approve your request.


[73 FR 59298, Oct. 8, 2008, as amended at 86 FR 34531, June 29, 2021]


§ 1060.510 How do I test EPA Low-Emission Fuel Lines for permeation emissions?

For EPA Low-Emission Fuel Lines, measure emissions according to SAE J2260, which is incorporated by reference in § 1060.810.


[74 FR 8427, Feb. 24, 2009]


§ 1060.515 How do I test EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions?

Measure emission as follows for EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines:


(a) Prior to permeation testing, use good engineering judgment to precondition the fuel line by filling it with the fuel specified in this paragraph (a), sealing the openings, and soaking it for at least four weeks at 43 ±5 °C or eight weeks at 23 ±5 °C.


(1) For EPA Nonroad Fuel Lines, use Fuel CE10, which is Fuel C as specified in ASTM D471 (incorporated by reference in § 1060.810) blended with ethanol such that the blended fuel has 10.0 ±1.0 percent ethanol by volume.


(2) For EPA Cold-Weather Fuel Lines, use gasoline blended with ethanol as described in § 1060.501(c).


(b) Drain the fuel line and refill it immediately with the fuel specified in paragraph (a) of this section. Be careful not to spill any fuel.


(c) Except as specified in paragraph (d) of this section, measure fuel line permeation emissions using the equipment and procedures for weight-loss testing specified in SAE J30 or SAE J1527 (incorporated by reference in § 1060.810). Start the measurement procedure within 8 hours after draining and refilling the fuel line. Perform the emission test over a sampling period of 14 days. You may omit up to two daily measurements in any seven day period. Determine your final emission result based on the average of measured values over the 14-day period. Maintain an ambient temperature of 23±2 °C throughout the sampling period.


(d) For fuel lines with a nominal inner diameter below 5.0 mm, you may alternatively measure fuel line permeation emissions using the equipment and procedures for weight-loss testing specified in SAE J2996 (incorporated by reference in § 1060.810). Determine your final emission result based on the average of measured values over the 14-day sampling period. Maintain an ambient temperature of 23±2 °C throughout the sampling period.


(e) Use good engineering judgment to test short fuel line segments. For example, you may need to join individual fuel line segments using proper connection fittings to achieve enough length and surface area for a proper measurement. Size the fuel reservoir appropriately for the tested fuel line.


[73 FR 59298, Oct. 8, 2008, as amended at 74 FR 8427, Feb. 24, 2009; 75 FR 23027, Apr. 30, 2010; 80 FR 9116, Feb. 19, 2015; 86 FR 34531, June 29, 2021]


§ 1060.520 How do I test fuel tanks for permeation emissions?

Measure permeation emissions by weighing a sealed fuel tank before and after a temperature-controlled soak.


(a) Preconditioning durability testing. Take the following steps before an emission test, in any order, if your emission control technology involves surface treatment or other post-processing treatments such as an epoxy coating:


(1) Pressure cycling. Perform a pressure test by sealing the fuel tank and cycling it between +13.8 and −3.4 kPa (+2.0 and −0.5 psig) for 10,000 cycles at a rate of 60 seconds per cycle. The purpose of this test is to represent environmental wall stresses caused by pressure changes and other factors (such as vibration or thermal expansion). If your fuel tank cannot be tested using the pressure cycles specified by this paragraph (a)(1), you may ask to use special test procedures under § 1060.505.


(2) UV exposure. Perform a sunlight-exposure test by exposing the fuel tank to an ultraviolet light of at least 24 W/m2 (0.40 W-hr/m2/min) on the fuel tank surface for at least 450 hours. Alternatively, the fuel tank may be exposed to direct natural sunlight for an equivalent period of time as long as you ensure that the fuel tank is exposed to at least 450 daylight hours.


(3) Slosh testing. Perform a slosh test by filling the fuel tank to 40-50 percent of its capacity with the fuel specified in paragraph (e) of this section and rocking it at a rate of 15 cycles per minute until you reach one million total cycles. Use an angle deviation of +15° to −15° from level. Take steps to ensure that the fuel remains at 40-50 percent of its capacity throughout the test run.


(4) Cap testing. Perform durability cycles on fuel caps intended for use with handheld equipment by putting the fuel cap on and taking it off 300 times. Tighten the fuel cap each time in a way that represents the typical in-use experience.


(b) Preconditioning fuel soak. Take the following steps before an emission test:


(1) Fill the fuel tank to its nominal capacity with the fuel specified in paragraph (e) of this section, seal it, and allow it to soak at 28±5 °C for at least 20 weeks. Alternatively, the fuel tank may be soaked for at least 10 weeks at 43 5 °C. You may count the time of the preconditioning steps in paragraph (a) of this section as part of the preconditioning fuel soak as long as the ambient temperature remains within the specified temperature range and the fuel tank continues to be at least 40 percent full throughout the test; you may add or replace fuel as needed to conduct the specified durability procedures. Void the test if you determine that the fuel tank has any kind of leak.


(2) Empty the fuel tank and immediately refill it with the specified test fuel to its nominal capacity. Be careful not to spill any fuel.


(3) [Reserved]


(4) Allow the fuel tank and its contents to equilibrate to the temperatures specified in paragraph (d)(7) of this section. Seal the fuel tank as described in paragraph (b)(5) of this section once the fuel temperatures are stabilized at the test temperature. You must seal the fuel tank no more than eight hours after refueling. Until the fuel tank is sealed, take steps to minimize the vapor losses from the fuel tank, such as keeping the fuel cap loose on the fuel inlet or routing vapors through a vent hose.


(5) Seal the fuel tank as follows:


(i) If fuel tanks are designed for use with a filler neck such that the fuel cap is not directly mounted on the fuel tank, you may seal the fuel inlet with a nonpermeable covering.


(ii) If fuel tanks are designed with fuel caps directly mounted on the fuel tank, take one of the following approaches:


(A) Use a production fuel cap expected to have permeation emissions at least as high as the highest-emitting fuel cap that you expect to be used with fuel tanks from the emission family. It would generally be appropriate to consider an HDPE fuel cap with a nitrile rubber seal to be worst-case.


(B) You may seal the fuel inlet with a nonpermeable covering if you separately account for permeation emissions from the fuel cap. This may involve a separate measurement of permeation emissions from a worst-case fuel cap as described in § 1060.521. This may also involve specifying a worst-case Family Emission Limit based on separately certified fuel caps as described in § 1060.103(e).


(C) If you use or specify a fuel gasket made of low-permeability material, you may seal the fuel inlet with a nonpermeable covering and calculate an emission rate for the complete fuel tank using a default value of 30 g/m
2/day for the fuel cap (or 50 g/m
2/day for testing at 40 °C). Use the smallest inside cross-sectional area of the opening on which the cap is mounted as the fuel cap’s surface area.


(iii) Openings that are not normally sealed on the fuel tank (such as hose-connection fittings and vents in fuel caps) may be sealed using nonpermeable fittings such as metal or fluoropolymer plugs.


(iv) Openings for petcocks that are designed for draining fuel may be sealed using nonpermeable fittings such as metal or fluoropolymer plugs.


(v) Openings for grommets may be sealed using nonpermeable fittings such as metal or fluoropolymer plugs.


(vi) Rather than sealing a fuel tank with nonpermeable fittings, you may produce a fuel tank for testing without machining or stamping those holes.


(c) Reference tank. A reference tank is required to correct for buoyancy effects that may occur during testing. Prepare the reference tank as follows:


(1) Obtain a second tank whose total volume is within 5 percent of the test tank’s volume. You may not use a tank that has previously contained fuel or any other contents that might affect its mass stability.


(2) Fill the reference tank with enough glass beads (or other inert material) so the mass of the reference tank is approximately the same as the test tank when filled with fuel. Considering the performance characteristics of your balance, use good engineering judgment to determine how similar the mass of the reference tank needs to be to the mass of the test tank.


(3) Ensure that the inert material is dry.


(4) Seal the tank.


(d) Permeation test run. To run the test, take the following steps after preconditioning:


(1) Determine the fuel tank’s internal surface area in square-meters, accurate to at least three significant figures. You may use less accurate estimates of the surface area if you make sure not to overestimate the surface area.


(2) Weigh the sealed test tank and record the weight. Place the reference tank on the balance and tare it so it reads zero. Place the sealed test tank on the balance and record the difference between the test tank and the reference tank. This value is Mo. Take this measurement directly after sealing the test tank as specified in paragraphs (b)(4) and (5) of this section.


(3) Carefully place the test tank within a temperature-controlled room or enclosure. Do not spill or add any fuel.


(4) Close the room or enclosure as needed to control temperatures and record the time. However, you may need to take steps to prevent an accumulation of hydrocarbon vapors in the room or enclosure that might affect the degree to which fuel permeates through the fuel tank. This might simply involve passive ventilation to allow fresh air exchanges.


(5) Ensure that the measured temperature in the room or enclosure stays within the temperatures specified in paragraph (d)(6) of this section.


(6) Leave the test tank in the room or enclosure for the duration of the test run, except that you may remove the tank for up to 30 minutes at a time to meet weighing requirements.


(7) Hold the temperature of the room or enclosure at 28 ±2 °C; measure and record the temperature at least daily. You may alternatively hold the temperature of the room or enclosure at 40 ±2 °C to demonstrate compliance with the alternative standards specified in § 1060.103(b).


(8) Measure weight loss daily by retaring the balance using the reference tank and weighing the sealed test tank. Calculate the cumulative weight loss in grams for each measurement. Calculate the coefficient of determination, r
2, based on a linear plot of cumulative weight loss vs. test days. Use the equation in 40 CFR 1065.602(k), with cumulative weight loss represented by yi and cumulative time represented by yref. The daily measurements must be at approximately the same time each day. You may omit up to two daily measurements in any seven-day period. Test for ten full days, then determine when to stop testing as follows:


(i) You may stop testing after the measurement on the tenth day if r
2 is at or above 0.95 or if the measured value is less than 50 percent of the applicable standard. (Note that if a Family Emission Limit applies for the family, it is considered to be the applicable standard for that family.) This means that if you stop testing with an r
2 below 0.95, you may not use the data to show compliance with a Family Emission Limit less than twice the measured value.


(ii) If after ten days of testing your r
2 value is below 0.95 and your measured value is more than 50 percent of the applicable standard in subpart B of this part, continue testing for a total of 20 days or until r
2 is at or above 0.95. If r
2 is not at or above 0.95 within 20 days of testing, discontinue the test and precondition the test tank further until it has stabilized emission levels, then repeat the testing.


(9) Record the difference in mass between the reference tank and the test tank for each measurement. This value is Mi, where “i” is a counter representing the number of days elapsed. Subtract Mi from Mo and divide the difference by the internal surface area of the fuel tank. Divide this g/m
2 value by the number of test days (using at least two decimal places) to calculate the emission rate in g/m
2/day. Example: If a fuel tank with an internal surface area of 0.720 m
2 weighed 1.31 grams less than the reference tank at the beginning of the test and weighed 9.86 grams less than the reference tank after soaking for 10.03 days, the emission rate would be ((−1.31 g) − (−9.86 g))/0.720 m
2 /10.03 days = 1.1839 g/m
2/day.


(10) Determine your final emission result based on the cumulative weight loss measured on the final day of testing. Round this result to the same number of decimal places as the emission standard.


(e) Fuel specifications. Use a low-level ethanol-gasoline blend as specified in § 1060.501(c). As an alternative, you may use Fuel CE10, as described in § 1060.515(a)(1).


(f) Flow chart. The following figure presents a flow chart for the permeation testing described in this section:



[73 FR 59298, Oct. 8, 2008, as amended at 75 FR 23027, Apr. 30, 2010; 80 FR 9116, Feb. 19, 2015; 86 FR 34531, June 29, 2021]


§ 1060.521 How do I test fuel caps for permeation emissions?

If you measure a fuel tank’s permeation emissions with a nonpermeable covering in place of the fuel cap under § 1060.520(b)(5)(ii)(B), you must separately measure permeation emissions from a fuel cap. You may show that your fuel tank and fuel cap meet emission standards by certifying them separately or by combining the separate measurements into a single emission rate based on the relative surface areas of the fuel tank and fuel cap. However, you may not combine these emission measurements if you test the fuel cap at a nominal temperature of 28 °C and you test the fuel tank at 40 °C. Measure the fuel cap’s permeation emissions as follows:


(a) Select a fuel cap expected to have permeation emissions at least as high as the highest-emitting fuel cap that you expect to be used with fuel tanks from the emission family. Include a gasket that represents production models. If the fuel cap includes vent paths, seal these vents as follows:


(1) If the vent path is through grooves in the gasket, you may use another gasket with no vent grooves if it is otherwise the same as a production gasket.


(2) If the vent path is through the cap, seal any vents for testing.


(b) Attach the fuel cap to a fuel tank with a capacity of at least one liter made of metal or some other impermeable material.


(c) Use the procedures specified in § 1060.520 to measure permeation emissions. Calculate emission rates using the smallest inside cross sectional area of the opening on which the cap is mounted as the fuel cap’s surface area.


§ 1060.525 How do I test fuel systems for diurnal emissions?

Use the procedures of this section to determine whether your fuel tanks meet diurnal emission standards as specified in § 1060.105.


(a) Use the following procedure to measure diurnal emissions:


(1) Diurnal measurements are based on representative temperature cycles, as follows:


(i) Diurnal fuel temperatures for marine fuel tanks that will be installed in nontrailerable boats must undergo repeat temperature swings of 2.6 °C between nominal values of 27.6 and 30.2 °C.


(ii) Diurnal fuel temperatures for other installed marine fuel tanks must undergo repeat temperature swings of 6.6 °C between nominal values of 25.6 and 32.2 °C.


(iii) For fuel tanks installed in equipment other than marine vessels, the following table specifies a profile of ambient temperatures:


Table 1 to § 1060.525 – Diurnal Temperature Profiles for Nonmarine Fuel Tanks

Time

(hours)
Ambient

temperature

profile

( °C)
022.2
122.5
224.2
326.8
429.6
531.9
633.9
735.1
835.4
935.6
1035.3
1134.5
1233.2
1331.4
1429.7
1528.2
1627.2
1726.1
1825.1
1924.3
2023.7
2123.3
2222.9
2322.6
2422.2

(2) Fill the fuel tank to 40 percent of nominal capacity with the gasoline specified in 40 CFR 1065.710(c) for general testing.


(3) Install a vapor line from any vent ports that would not be sealed in the final in-use configuration. Use a length of vapor line representing the largest inside diameter and shortest length that would be expected with the range of in-use installations for the emission family.


(4) If the fuel tank is equipped with a carbon canister, load the canister with butane or gasoline vapors to its canister working capacity as specified in § 1060.240(e)(2)(i) and attach it to the fuel tank in a way that represents a typical in-use configuration. Purge the canister as follows to prepare for emission measurement:


(i) For marine fuel tanks, perform a single heating and cooling cycle as specified in paragraph (a)(7) of this section without measuring emissions.


(ii) For nonmarine fuel tanks, establish a characteristic purge volume by running an engine with the fuel tank installed to represent an in-use configuration. Measure the volume of air flowing through the canister while the engine operates for 30 minutes over repeat cycles of the appropriate duty cycle used for certifying the engine for exhaust emissions. Set up the loaded canister for testing by purging it with the characteristic purge volume from the engine simulation run.


(5) Stabilize the fuel tank to be within 2.0 °C of the nominal starting temperature specified in paragraph (a)(1) of this section. In the case of marine fuel tanks, install a thermocouple meeting the requirements of 40 CFR 86.107-96(e) in the approximate mid-volume of fuel and record the temperature at the end of the stabilization period to the nearest 0.1 °C. For sealed fuel systems, replace the fuel cap once the fuel reaches equilibrium at the appropriate starting temperature.


(6) Prepare the tank for mass measurement using one of the following procedures:


(i) Place the stabilized fuel tank in a SHED meeting the specifications of 40 CFR 86.107-96(a)(1) that is equipped with a FID analyzer meeting the specifications of 40 CFR 1065.260. Take the following steps in sequence:


(A) Purge the SHED.


(B) Close and seal the SHED.


(C) Zero and span the FID analyzer.


(D) Within ten minutes of sealing the SHED, measure the initial hydrocarbon concentration. This is the start of the sampling period.


(ii) If your testing configuration involves mass emissions at the standard of 2.0 grams or more, you may alternatively place the stabilized fuel tank in any temperature-controlled environment and establish mass emissions as a weight loss relative to a reference fuel tank using the procedure specified in § 1060.520(d) instead of calculating it from changing hydrocarbon concentrations in the SHED.


(7) Control temperatures as follows:


(i) For marine fuel tanks, supply heat to the fuel tank for continuously increasing temperatures such that the fuel reaches the maximum temperature in 8 hours. Set the target temperature by adding the temperature swing specified in paragraph (a)(1) of this section to the recorded starting temperature. Hold the tank for approximately 60 minutes at a temperature no less than 0.1 °C below the target temperature. For example, if the recorded starting fuel temperature for a fuel tank that will be installed in a nontrailerable vessel is 27.1 °C, the target temperature is 29.7 °C and the fuel must be stabilized for 60 minutes with fuel temperatures not falling below 29.6 °C. For EPA testing, fuel temperatures may not go 1.0 °C above the target temperature at any point during the heating or stabilization sequence. Measure the hydrocarbon concentration in the SHED at the end of the high-temperature stabilization period. Calculate the diurnal emissions for this heating period based on the change in hydrocarbon concentration over this sampling period. Allow the fuel temperature to cool sufficiently to stabilize again at the starting temperature without emission sampling. Repeat the heating and measurement sequence for three consecutive days, starting each heating cycle no more than 26 hours after the previous start.


(ii) For nonmarine fuel tanks, follow the air temperature trace from paragraph (a)(1)(iii) of this section for three consecutive 24-hour periods. Measured temperatures must follow the profile with a maximum deviation of 1.7 °C for any hourly measurement and an average temperature deviation not to exceed 1.0 °C, where the average deviation is calculated using the absolute value of each measured deviation. Start measuring emissions when you start the temperature profile. The end of the first, second, and third emission sampling periods must occur 1440±6, 2880±6, and 4320±6 minutes, respectively, after starting the measurement procedure.


(8) Use the highest of the three emission levels to determine whether your fuel tank meets the diurnal emission standard.


(9) For emission control technologies that rely on a sealed fuel system, you may omit the preconditioning steps in paragraph (a)(4) of this section and the last two 24-hour periods of emission measurements in paragraph (a)(7) of this section. For purposes of this paragraph (a), sealed fuel systems include those that rely on pressure-relief valves, limiting flow orifices, bladder fuel tanks, and volume-compensating air bags.


(b) You may subtract your fuel tank’s permeation emissions from the measured diurnal emissions if the fuel tank is preconditioned with diurnal test fuel as described in § 1060.520(b) or if you use good engineering judgment to otherwise establish that the fuel tank has stabilized permeation emissions. Measure permeation emissions for subtraction as specified in § 1060.520(c) and (d) before measuring diurnal emissions, except that the permeation measurement must be done with diurnal test fuel at 28±2 °C. Use appropriate units and corrections to subtract the permeation emissions from the fuel tank during the diurnal emission test. You may not subtract a greater mass of emissions under this paragraph (b) than the fuel tank would emit based on meeting the applicable emission standard for permeation.


[80 FR 9117, Feb. 19, 2015, as amended at 86 FR 34531, June 29, 2021]


Subpart G – Special Compliance Provisions

§ 1060.601 How do the prohibitions of 40 CFR 1068.101 apply with respect to the requirements of this part?

(a) As described in § 1060.1, fuel tanks and fuel lines that are used with or intended to be used with new nonroad engines or equipment are subject to evaporative emission standards under this part. This includes portable marine fuel tanks and fuel lines and other fuel-system components associated with portable marine fuel tanks. Note that § 1060.1 specifies an implementation schedule based on the date of manufacture of nonroad equipment, so new fuel tanks and fuel lines are not subject to standards under this part if they will be installed for use in equipment built before the specified dates for implementing the appropriate standards, subject to the limitations in paragraph (b) of this section. Except as specified in paragraph (f) of this section, fuel-system components that are subject to permeation or diurnal emission standards under this part must be covered by a valid certificate of conformity before being introduced into U.S. commerce to avoid violating the prohibition of 40 CFR 1068.101(a). To the extent we allow it under the exhaust standard-setting part, fuel-system components may be certified with a family emission limit higher than the specified emission standard.


(b) New replacement fuel tanks and fuel lines must meet the requirements of this part 1060 if they are intended to be used with nonroad engines or equipment regulated under this part 1060, as follows:


(1) Applicability of standards between January 1, 2012 and December 31, 2019. Manufacturers, distributors, retailers, and importers must clearly state on the packaging for all replacement components that could reasonably be used with nonroad engines how such components may be used consistent with the prohibition in paragraph (a) of this section. It is presumed that such components are intended for use with nonroad engines regulated under this part 1060 unless the components, or the packaging for such components, clearly identify appropriate restrictions. This requirement does not apply for components that are clearly not intended for use with fuels.


(2) Applicability of standards after January 1, 2020. Starting January 1, 2020, it is presumed that replacement components will be used with nonroad engines regulated under this part if they can reasonably be used with such engines. Manufacturers, distributors, retailers, and importers are therefore obligated to take reasonable steps to ensure that any uncertified components are not used to replace certified components. This would require labeling the components and may also require restricting the sales and requiring the ultimate purchaser to agree to not use the components inappropriately. This paragraph (b)(2) does not apply for components that are clearly not intended for use with fuels.


(3) Applicability of the tampering prohibition. If a fuel tank or fuel line needing replacement was certified to meet the emission standards in this part with a family emission limit below the otherwise applicable standard, the new replacement fuel tank or fuel line must be certified to current emission standards, but need not be certified with the same or lower family emission limit to avoid violating the tampering prohibition in 40 CFR 1068.101(b)(1).


(c) [Reserved]


(d) Manufacturers that generate or use evaporative emission credits related to Marine SI engines in 40 CFR part 1045 or Small SI engines in 40 CFR part 1054 are subject to the emission standards for which they are generating or using evaporative emission credits. These engines or equipment must therefore be covered by a valid certificate of conformity showing compliance with emission-credit provisions before being introduced into U.S. commerce to avoid violating the prohibition of 40 CFR 1068.101(a).


(e) If there is no valid certificate of conformity for any given evaporative emission standard for new equipment, the manufacturers of the engine, equipment and fuel-system components are each liable for violations of the prohibited acts with respect to the fuel systems and fuel-system components they have introduced into U.S. commerce, including fuel systems and fuel-system components installed in engines or equipment at the time the engines or equipment are introduced into U.S. commerce.


(f) If you manufacture fuel lines or fuel tanks that are subject to the requirements of this part as described in paragraph (a) of this section, 40 CFR 1068.101(a) does not prohibit you from shipping your products directly to an equipment manufacturer or another manufacturer from which you have received a written commitment to be responsible for certifying the components as required under this part 1060. This includes SHED-based certification of Small SI equipment as described in § 1060.105. If you ship fuel lines or fuel tanks under this paragraph (f), you must include documentation that accompanies the shipped products identifying the name and address of the company receiving shipment and stating that the fuel lines or fuel tanks are exempt under the provisions of 40 CFR 1060.601(f).


(g) If new evaporative emission standards apply in a given model year, your equipment in that model year must have fuel-system components that are certified to the new standards, except that you may continue to use up your normal inventory of earlier fuel-system components that were built before the date of the new or changed standards. For example, if your normal inventory practice is to keep on hand a one-month supply of fuel tanks based on your upcoming production schedules, and a new tier of standards starts to apply for the 2012 model year, you may order fuel tanks based on your normal inventory requirements late in the fuel tank manufacturer’s 2011 model year and install those fuel tanks in your equipment, regardless of the date of installation. Also, if your model year starts before the end of the calendar year preceding new standards, you may use fuel-system components from the previous model year (or uncertified components if no standards were in place) for those units you produce before January 1 of the year that new standards apply. If emission standards do not change in a given model year, you may continue to install fuel-system components from the previous model year without restriction. You may not circumvent the provisions of 40 CFR 1068.101(a)(1) by stockpiling fuel-system components that were built before new or changed standards take effect.


(h) If equipment manufacturers hold certificates of conformity for their equipment but they use only fuel-system components that have been certified by other companies, they may satisfy their defect-reporting obligations by tracking the information described in 40 CFR 1068.501(b)(1) related to possible defects, reporting this information to the appropriate component manufacturers, and keeping these records for eight years. Such equipment manufacturers will not be considered in violation of 40 CFR 1068.101(b)(6) for failing to perform investigations, make calculations, or submit reports to EPA as specified in 40 CFR 1068.501. See § 1060.5(a).


[73 FR 59298, Oct. 8, 2008, as amended at 75 FR 23027, Apr. 30, 2010; 86 FR 34532, June 29, 2021]


§ 1060.605 Exemptions from evaporative emission standards.

(a) Except as specified in the exhaust standard-setting part and paragraph (b) of this section, equipment using an engine that is exempt from exhaust emission standards under the provisions in 40 CFR part 1068, subpart C or D, is also exempt from the requirements of this part 1060. For example, engines or equipment exempted from exhaust emission standards for purposes of national security do not need to meet evaporative emission standards. Also, any engine that is exempt from emission standards because it will be used solely for competition does not need to meet evaporative emission standards. Equipment that is exempt from all exhaust emission standards under the standard-setting part are also exempt from the requirements of this part 1060; however, this does not apply for engines that must meet a less stringent exhaust emission standard as a condition of the exemption.


(b) Engines produced under the replacement-engine exemption in 40 CFR 1068.240 must use fuel-system components that meet the evaporative emission standards based on the model year of the engine being replaced subject to the provisions of 40 CFR 1068.265. If no evaporative emission standards applied at that time, no requirements related to evaporative emissions apply to the new engine. Installing a replacement engine does not change the applicability of requirements for the equipment into which the replacement engine is installed.


(c) Engines or equipment that are temporarily exempt from EPA exhaust emission standards are also exempt from the requirements of this part 1060 for the same period as the exhaust exemption.


(d) For equipment powered by more than one engine, all the engines installed in the equipment must be exempt from all applicable EPA exhaust emission standards for the equipment to also be exempt under paragraph (a) or (b) of this section.


(e) In unusual circumstances, we may exempt components or equipment from the requirements of this part 1060 even if the equipment is powered by one or more engines that are subject to EPA exhaust emission standards. See 40 CFR part 1068. Such exemptions will be limited to:


(1) Testing. See 40 CFR 1068.210.


(2) National security. See 40 CFR 1068.225.


(3) Economic hardship. See 40 CFR 1068.245 and 1068.250.


(f) Evaporative emission standards generally apply based on the model year of the equipment, which is determined by the equipment’s date of final assembly. However, in the first year of new emission standards, equipment manufacturers may apply evaporative emission standards based on the model year of the engine as shown on the engine’s emission control information label. For example, for fuel tank permeation standards starting in 2012, equipment manufacturers may order a batch of 2011 model year engines for installation in 2012 model year equipment, subject to the anti-stockpiling provisions of 40 CFR 1068.105(a). The equipment with the 2011 model year engines would not need to meet fuel tank permeation standards as long as the equipment is fully assembled by December 31, 2012.


§ 1060.610 Temporary exemptions for manufacturing and assembling equipment and fuel-system components.

(a) If you are a certificate holder, you may ship components or equipment requiring further assembly between two of your facilities, subject to the provisions of this paragraph (a). Unless we approve otherwise, you must maintain ownership and control of the products until they reach their destination. We may allow for shipment where you do not maintain actual ownership and control of the engines (such as hiring a shipping company to transport the products) but only if you demonstrate that the products will be transported only according to your specifications. Notify us of your intent to use the exemption in this paragraph (a) in your application for certification, if applicable. Your exemption is effective when we grant your certificate. You may alternatively request an exemption in a separate submission; for example, this would be necessary if you will not be the certificate holder for the products in question. We may require you to take specific steps to ensure that such products are in a certified configuration before reaching the ultimate purchaser. Note that since this is a temporary exemption, it does not allow you to sell or otherwise distribute equipment in an uncertified configuration to ultimate purchasers. Note also that the exempted equipment remains new and subject to emission standards until its title is transferred to the ultimate purchaser or it otherwise ceases to be new.


(b) If you certify equipment, you may ask us at the time of certification for an exemption to allow you to ship your equipment without a complete fuel system. We will generally approve an exemption under this paragraph (b) only if you can demonstrate that the exemption is necessary and that you will take steps to ensure that equipment assembly will be properly completed before reaching the ultimate purchaser. We may specify conditions that we determine are needed to ensure that shipping the equipment without such components will not result in the equipment operating with uncertified components or otherwise in an uncertified configuration. For example, we may require that you ship the equipment to manufacturers that are contractually obligated to install certain components. See 40 CFR 1068.261.


[86 FR 34532, June 29, 2021]


Subpart H – Averaging, Banking, and Trading Provisions

§ 1060.701 Applicability.

(a) You are allowed to comply with the emission standards in this part with evaporative emission credits only if the exhaust standard-setting part explicitly allows it for evaporative emissions.


(b) The following exhaust standard-setting parts allow some use of evaporative emission credits:


(1) 40 CFR part 1045 for marine vessels.


(2) 40 CFR part 1051 for recreational vehicles.


(3) 40 CFR part 1054 for Small SI equipment.


(c) As specified in 40 CFR part 1048, there is no allowance to generate or use emission credits with Large SI equipment.


§ 1060.705 How do I certify components to an emission level other than the standard under this part or use such components in my equipment?

As specified in this section, a fuel-system component may be certified to a family emission limit (FEL) instead of the otherwise applicable emission standard. Note that the exhaust standard-setting part may apply maximum values for an FEL (i.e., FEL caps).


(a) Requirements for certifying component manufacturers. See subpart C of this part for instructions regarding the general requirements for certifying components.


(1) When you submit your application for certification, indicate the FEL to which your components will be certified. This FEL will serve as the applicable standard for your component, and the equipment that uses the component. For example, when the regulations of this part use the phrase “demonstrate compliance with the applicable emission standard” it will mean “demonstrate compliance with the FEL” for your component.


(2) You may not change the FEL for an emission family. To specify a different FEL for your components, you must send a new application for certification for a new emission family.


(3) Unless your FEL is below all emission standards that could potentially apply, you must ensure that all equipment manufacturers that will use your component are aware of the limitations regarding the conditions under which they may use your component.


(4) It is your responsibility to read the instructions relative to emission-credit provisions in the standard-setting parts identified in § 1060.1.


(b) Requirements for equipment manufacturers. See subpart C of this part for instructions regarding your ability to rely on the component manufacturer’s certificate.


(1) The FEL of the component will serve as the applicable standard for your equipment.


(2) You may not specify more than one FEL for an emission family at one time; however, you may change the FEL during the model year as described in § 1060.225(f).


(3) If the FEL is above the emission standard you must ensure that the exhaust standard-setting part allows you to use evaporative emission credits to comply with emission standards and that you will have an adequate source of evaporative emission credits. You must certify your equipment as specified in § 1060.201 and the rest of subpart C of this part.


Subpart I – Definitions and Other Reference Information

§ 1060.801 What definitions apply to this part?

The following definitions apply to this part. The definitions apply to all subparts unless we note otherwise. All undefined terms have the meaning the Clean Air Act gives to them. The definitions follow:


Accuracy and precision means the sum of accuracy and repeatability, as defined in 40 CFR 1065.1001. For example, if a measurement device is determined to have an accuracy of ±1% and a repeatability of ±2%, then its accuracy and precision would be ±3%.


Adjustable parameter means any device, system, or element of design that someone can adjust and that, if adjusted, may affect emissions. You may ask us to exclude a parameter if you show us that it will not be adjusted in use in a way that affects emissions.


Applicable emission standard or applicable standard means an emission standard to which a fuel-system component is subject. Additionally, if a fuel-system component has been or is being certified to another standard or FEL, applicable emission standard means the FEL or other standard to which the fuel-system component has been or is being certified. This definition does not apply to subpart H of this part.


Canister working capacity means the measured amount of hydrocarbon vapor that can be stored in a canister as specified in § 1060.240(e)(2)(i).


Carbon working capacity means the measured amount of hydrocarbon vapor that can be stored in a given volume of carbon when tested according to ASTM D5228 (incorporated by reference in § 1060.810). See § 1060.240(e)(2)(ii).


Certification means relating to the process of obtaining a certificate of conformity for an emission family that complies with the emission standards and requirements in this part.


Certified emission level means the highest official emission result in an emission family.


Clean Air Act means the Clean Air Act, as amended, 42 U.S.C. 7401-7671q.


Cold-weather equipment is limited to the following types of handheld equipment: Chainsaws, cut-off saws, clearing saws, brush cutters with engines at or above 40cc, commercial earth and wood drills, and ice augers. This includes earth augers if they are also marketed as ice augers.


Configuration means a unique combination of hardware (material, geometry, and size) and calibration within an emission family. Units within a single configuration differ only with respect to normal production variability or factors unrelated to emissions.


Date of manufacture, means one of the following with respect to equipment:


(1) For outboard engines with under-cowl fuel tanks and for vessels equipped with outboard engines and installed fuel tanks, date of manufacture means the date on which the fuel tank is installed.


(2) For all other equipment, date of manufacture has the meaning given in 40 CFR 1068.30.


Days means calendar days unless otherwise specified. For example, when we specify working days we mean calendar days, excluding weekends and U.S. national holidays.


Designated Compliance Officer means the Director, Gasoline Engine Compliance Center, U.S. Environmental Protection Agency, 2000 Traverwood Drive, Ann Arbor, MI 48105; [email protected].


Detachable fuel line means a fuel line or fuel line assembly intended to be used with a portable nonroad fuel tank and which is connected by special fittings to the fuel tank and/or engine for easy disassembly. Fuel lines that require a wrench or other tools to disconnect are not considered detachable fuel lines. Fuel lines that are labeled or marketed as USCG Type B1 fuel line as specified in 33 CFR 183.540 are not considered detachable fuel lines if they are sold to the ultimate purchaser without quick-connect fittings or similar hardware.


Diurnal emissions means evaporative emissions that occur as a result of venting fuel tank vapors during daily temperature changes while the engine is not operating.


Effective length-to-diameter ratio means the mean vapor path length of a carbon canister divided by the effective diameter of that vapor path. The effective diameter is the diameter of a circle with the same cross-sectional area as the average cross-sectional area of the carbon canister’s vapor path.


Emission control system means any device, system, or element of design that controls or reduces the regulated evaporative emissions from a piece of nonroad equipment.


Emission-data unit means a fuel line, fuel tank, fuel system, or fuel-system component that is tested for certification. This includes components tested by EPA.


Emission family has the meaning given in § 1060.230.


Emission-related maintenance means maintenance that substantially affects emissions or is likely to substantially affect emission deterioration.


Equipment means vehicles, marine vessels, and other types of nonroad equipment that are subject to this part’s requirements.


Evaporative means relating to fuel emissions that result from permeation of fuel through the fuel-system materials or from ventilation of the fuel system.


Exhaust standard-setting part means the part in the Code of Federal Regulations that contains exhaust emission standards for a particular piece of equipment (or the engine in that piece of equipment). For example, the exhaust standard-setting part for off-highway motorcycles is 40 CFR part 1051. Exhaust standard-setting parts may include evaporative emission requirements or describe how the requirements of this part 1060 apply.


Exposed gasket surface area means the surface area of the gasket inside the fuel tank that is exposed to fuel or fuel vapor. For the purposes of calculating exposed surface area of a gasket, the thickness of the gasket and the outside dimension of the opening being sealed are used. Gasket overhang into the fuel tank should be ignored for the purpose of this calculation.


Family emission limit (FEL) means an emission level declared by the manufacturer to serve in place of an otherwise applicable emission standard under an ABT program specified by the exhaust standard-setting part. The family emission limit must be expressed to the same number of decimal places as the emission standard it replaces. The family emission limit serves as the emission standard for the emission family with respect to all required testing.


Fuel CE10 has the meaning given in § 1060.515(a).


Fuel line means hoses or tubing designed to contain liquid fuel. The exhaust standard-setting part may further specify which types of hoses and tubing are subject to the standards of this part.


Fuel system means all components involved in transporting, metering, and mixing the fuel from the fuel tank to the combustion chamber(s), including the fuel tank, fuel tank cap, fuel pump, fuel filters, fuel lines, carburetor or fuel-injection components, and all fuel-system vents. In the case where the fuel tank cap or other components (excluding fuel lines) are directly mounted on the fuel tank, they are considered to be a part of the fuel tank.


Fuel type means a general category of fuels such as gasoline or natural gas. There can be multiple grades within a single fuel type, such as premium gasoline, regular gasoline, or low-level ethanol-gasoline blends.


Gasoline means one of the following:


(1) For in-use fuels, gasoline means fuel that is commonly and commercially know as gasoline, including ethanol blends.


(2) For testing, gasoline has the meaning given in subpart F of this part.


Good engineering judgment means judgments made consistent with generally accepted scientific and engineering principles and all available relevant information. See 40 CFR 1068.5 for the administrative process we use to evaluate good engineering judgment.


High-permeability material means any nonmetal material that does not qualify as low-permeability material.


Installed marine fuel line means a fuel line designed for delivering fuel to a Marine SI engine that does not meet the definition of portable marine fuel line.


Installed marine fuel tank means a fuel tank designed for delivering fuel to a Marine SI engine that does not meet the definition of portable marine fuel tanks.


Large SI means relating to engines that are subject to evaporative emission standards in 40 CFR part 1048.


Low-permeability material means, for gaskets, a material with permeation emission rates at or below 10 (g-mm)/m
2/day when measured according to SAE J2659 (incorporated by reference in § 1060.810), where the test temperature is 23 °C, the test fuel is Fuel CE10, and testing immediately follows a four-week preconditioning soak with the test fuel.


Manufacture means the physical and engineering process of designing, constructing, and assembling an engine, piece of nonroad equipment, or fuel-system components subject to the requirements of this part.


Manufacturer has the meaning given in section 216(1) of the Clean Air Act (42 U.S.C. 7550(1)). In general, this term includes:


(1) Any person who manufactures an engine or piece of nonroad equipment for sale in the United States or otherwise introduces a new nonroad engine or a piece of new nonroad equipment into U.S. commerce.


(2) Any person who manufactures a fuel-system component for an engine subject to the requirements of this part as described in § 1060.1(a).


(3) Importers who import such products into the United States.


Marine SI means relating to vessels powered by engines that are subject to exhaust emission standards in 40 CFR part 1045.


Marine vessel has the meaning given in 40 CFR § 1045.801, which generally includes all nonroad equipment used as a means of transportation on water.


Model year means one of the following things:


(1) For equipment defined as “new nonroad equipment” under paragraph (1) of the definition of “new nonroad equipment” model year means one of the following:


(i) Calendar year of production.


(ii) Your annual new model production period if it is different than the calendar year. This must include January 1 of the calendar year for which the model year is named. It may not begin before January 2 of the previous calendar year and it must end by December 31 of the named calendar year.


(2) For other equipment defined as “new nonroad equipment” under paragraph (2) of the definition of “new nonroad equipment” model year has the meaning given in the exhaust standard-setting part.


(3) For other equipment defined as “new nonroad equipment” under paragraph (3) or (4) of the definition of “new nonroad equipment” model year means the model year of the engine as defined in the exhaust standard-setting part.


New nonroad equipment means equipment meeting one or more of the following criteria:


(1) Nonroad equipment for which the ultimate purchaser has never received the equitable or legal title. The equipment is no longer new when the ultimate purchaser receives this title or the product is placed into service, whichever comes first.


(2) Nonroad equipment that is defined as new under the exhaust standard-setting part. (Note: equipment that is not defined as new under the exhaust standard-setting part may be defined as new under this definition of “new nonroad equipment.”)


(3) Nonroad equipment with an engine that becomes new (as defined in the exhaust standard-setting part) while installed in the equipment. The equipment is no longer new when it is subsequently placed into service. This paragraph (3) does not apply if the engine becomes new before being installed in the equipment.


(4) Nonroad equipment not covered by a certificate of conformity issued under this part at the time of importation and manufactured after the requirements of this part start to apply (see § 1060.1). The equipment is no longer new when it is subsequently placed into service. Importation of this kind of new nonroad equipment is generally prohibited by 40 CFR part 1068.


Nominal capacity means a fuel tank’s volume as specified by the fuel tank manufacturer, using at least two significant figures, based on the maximum volume of fuel the tank can hold with standard refueling techniques.


Nonroad engine has the meaning we give in 40 CFR 1068.30. In general this means all internal-combustion engines except motor vehicle engines, stationary engines, engines used solely for competition, or engines used in aircraft. This part does not apply to all nonroad engines (see § 1060.1).


Nonroad equipment means a piece of equipment that is powered by or intended to be powered by one or more nonroad engines. Note that §§ 1060.5 and 1060.601 describes how we treat outboard engines, portable marine fuel tanks, and associated fuel-system components as nonroad equipment under this part 1060.


Nontrailerable boat means a vessel whose length is 26.0 feet or more, or whose width is more than 8.5 feet.


Official emission result means the measured emission rate for an emission-data unit.


Placed into service means put into initial use for its intended purpose. Equipment does not qualify as being “placed into service” based on incidental use by a manufacturer or dealer.


Portable marine fuel line means a detachable fuel line that is used or intended to be used to supply fuel to a marine engine during operation. This also includes any fuel line labeled or marketed at USCG Type B1 fuel line as specified in 33 CFR 183.540, whether or not it includes detachable connecting hardware; this is often called universal fuel line.


Portable marine fuel tank means a portable fuel tank that is used or intended to be used to supply fuel to a marine engine during operation.


Portable nonroad fuel tank means a fuel tank that meets each of the following criteria:


(1) It has design features indicative of use in portable applications, such as a carrying handle and fuel line fitting that can be readily attached to and detached from a nonroad engine.


(2) It has a nominal fuel capacity of 12 gallons or less.


(3) It is designed to supply fuel to an engine while the engine is operating.


(4) It is not used or intended to be used to supply fuel to a marine engine. Note that portable tanks excluded from this definition of “portable nonroad fuel tank” under this paragraph (4) because of their use with marine engines are portable marine fuel tanks.


Production period means the period in which a component or piece of equipment will be produced under a certificate of conformity. A given production period for an emission family may not include components certified using different test data. A production period may not exceed five years for certified components. Note that the definition of model year includes specifications related to production periods for which a certificate is valid for equipment.


Recreational vehicle means vehicles that are subject to evaporative emission standards in 40 CFR part 1051. This generally includes engines that will be installed in recreational vehicles if the engines are certified separately under 40 CFR 1051.20.


Relating to as used in this section means relating to something in a specific, direct manner. This expression is used in this section only to define terms as adjectives and not to broaden the meaning of the terms.


Revoke has the meaning given in 40 CFR 1068.30. If we revoke a certificate or an exemption, you must apply for a new certificate or exemption before continuing to introduce the affected equipment into U.S. commerce.


Round means to round numbers according to standard procedures as specified in 40 CFR 1065.1001.


Running loss emissions means unburned fuel vapor that escapes from the fuel system to the ambient atmosphere while the engine is operating, excluding permeation emissions and diurnal emissions. Running loss emissions generally result from fuel-temperature increases caused by heat released from in-tank fuel pumps, fuel recirculation, or proximity to heat sources such as the engine or exhaust components.


Sealed means lacking openings to the atmosphere that would allow a measurable amount of liquid or vapor to leak out under normal operating pressures or other pressures specified in this part. For example, you may generally establish a maximum value for operating pressures based on the highest pressure you would observe from an installed fuel tank during continuous equipment operation on a sunny day with ambient temperatures of 35 °C. A fuel system may be considered to have no measurable leak if it does not release bubbles when held underwater at the identified tank pressure for 60 seconds. This determination presumes the use of good engineering judgment; for example, it would not be appropriate to test the fuel tank such that small leaks would avoid detection by collecting in a cavity created by holding the tank with a certain orientation. Sealed fuel systems may have openings for emission controls or for fuel lines needed to route fuel to the engine.


Small SI means relating to engines that are subject to emission standards in 40 CFR part 1054.


Structurally integrated nylon fuel tank means a fuel tank having all the following characteristics:


(1) The fuel tank is made of a polyamide material that does not contain more than 50 percent by weight of a reinforcing glass fiber or mineral filler and does not contain more than 10 percent by weight of impact modified polyamides that use rubberized agents such as EPDM rubber.


(2) The fuel tank must be used in a cut-off saw or chainsaw or be integrated into a major structural member where, as a single component, the fuel tank material is a primary structural/stress member for other major components such as the engine, transmission, or cutting attachment.


Subchapter U means 40 CFR parts 1000 through 1299.


Suspend has the meaning given in 40 CFR 1068.30. If we suspend a certificate, you may not introduce into U.S. commerce equipment from that emission family unless we reinstate the certificate or approve a new one. If we suspend an exemption, you may not introduce into U.S. commerce equipment that was previously covered by the exemption unless we reinstate the exemption.


Tare means to use a container or other reference mass to zero a balance before weighing a sample. Generally, this means placing the container or reference mass on the balance, allowing it to stabilize, then zeroing the balance without removing the container or reference mass. This allows you to use the balance to determine the difference in mass between the sample and the container or reference mass.


Test sample means the collection of fuel lines, fuel tanks, or fuel systems selected from the population of an emission family for emission testing. This may include certification testing or any kind of confirmatory testing.


Test unit means a piece of fuel line, a fuel tank, or a fuel system in a test sample.


Ultimate purchaser means, with respect to any new nonroad equipment, the first person who in good faith purchases such new nonroad equipment for purposes other than resale.


Ultraviolet light means electromagnetic radiation with a wavelength between 300 and 400 nanometers.


United States has the meaning given in 40 CFR 1068.30.


U.S.-directed production volume means the amount of equipment, subject to the requirements of this part, produced by a manufacturer for which the manufacturer has a reasonable assurance that sale was or will be made to ultimate purchasers in the United States.


Useful life means the period during which new nonroad equipment is required to comply with all applicable emission standards. See § 1060.101.


Void has the meaning given in 40 CFR 1068.30. In general this means to invalidate a certificate or an exemption both retroactively and prospectively.


Volatile liquid fuel means any fuel other than diesel or biodiesel that is a liquid at atmospheric pressure and has a Reid Vapor Pressure higher than 2.0 pounds per square inch.


We (us, our) means the Administrator of the Environmental Protection Agency and any authorized representatives.


Wintertime equipment means equipment using a wintertime engine, as defined in 40 CFR 1054.801. Note this definition applies only for Small SI equipment.


[73 FR 59298, Oct. 8, 2008, as amended at 75 FR 23027, Apr. 30, 2010; 86 FR 34532, June 29, 2021]


§ 1060.805 What symbols, acronyms, and abbreviations does this part use?

The following symbols, acronyms, and abbreviations apply to this part:


° degree.

ASTM American Society for Testing and Materials.

C Celsius.

CFR Code of Federal Regulations.

EPA Environmental Protection Agency.

FEL family emission limit.

g gram.

gal gallon.

hr hour.

in inch.

kPa kilopascal.

kW kilowatt.

L liter.

m meter.

min minute.

mm millimeter.

psig pounds per square inch of gauge pressure.

SAE Society of Automotive Engineers.

SHED Sealed Housing for Evaporative Determination.

U.S. United States.

U.S.C. United States Code.

W watt.


§ 1060.810 What materials does this part reference?

(a) Materials incorporated by reference. Certain material is incorporated by reference into this part with the approval of the Director of the Federal Register under 5 U.S.C. 552(a) and 1 CFR part 51. To enforce any edition other than that specified in this section, a document must be published in the Federal Register and the material must be available to the public. All approved material is available for inspection at U.S. EPA, Air and Radiation Docket and Information Center, 1301 Constitution Ave. NW., Room B102, EPA West Building, Washington, DC 20460, (202) 202-1744, and is available from the sources listed below. It is also available for inspection at the National Archives and Records Administration (NARA). For information on the availability of this material at NARA, call 202-741-6030, or go to http://www.archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html.


(b) ASTM International material. The following standards are available from ASTM International, 100 Barr Harbor Drive, P.O. Box C700, West Conshohocken, PA, 19428-2959, (610) 832-9585, or http://www.astm.org/:


(1) ASTM D471-06, Standard Test Method for Rubber Property – Effect of Liquids, approved October 1, 2006 (“ASTM D471”), IBR approved for § 1060.515(a).


(2) ASTM D2862-97 (Reapproved 2004), Standard Test Method for Particle Size Distribution of Granular Activated Carbon, approved April 1, 2004 (“ASTM D2862”), IBR approved for § 1060.240(e).


(3) ASTM D3802-79 (Reapproved 2005), Standard Test Method for Ball-Pan Hardness of Activated Carbon, approved October 1, 2005 (“ASTM D3802”), IBR approved for § 1060.240(e).


(4) ASTM D4806-07, Standard Specification for Denatured Fuel Ethanol for Blending with Gasolines for Use as Automotive Spark-Ignition Engine Fuel, approved July 15, 2007 (“ASTM D4806”), IBR approved for § 1060.501(c).


(5) ASTM D5228-92 (Reapproved 2005), Standard Test Method for Determination of Butane Working Capacity of Activated Carbon, approved October 1, 2005 (“ASTM D5228”), IBR approved for § 1060.801.


(c) SAE International material. The following standards are available from SAE International, 400 Commonwealth Dr., Warrendale, PA 15096-0001, (877) 606-7323 (U.S. and Canada) or (724) 776-4970 (outside the U.S. and Canada), or http://www.sae.org:


(1) SAE J30, Fuel and Oil Hoses, Revised June 1998, IBR approved for § 1060.515(c).


(2) SAE J1527, Marine Fuel Hoses, Revised February 1993, IBR approved for § 1060.515(c).


(3) SAE J2260, Nonmetallic Fuel System Tubing with One or More Layers, Revised November 2004, IBR approved for § 1060.510.


(4) SAE J2659, Test Method to Measure Fluid Permeation of Polymeric Materials by Speciation, Issued December 2003, IBR approved for § 1060.801.


(5) SAE J2996, Surface Vehicle Recommended Practice, Small Diameter Fuel Line Permeation Test Procedure, Issued January 2013, IBR approved for § 1060.515(d).


(d) [Reserved]


(e) American Boat and Yacht Council Material. The following documents are available from the American Boat and Yacht Council, 613 Third Street, Suite 10, Annapolis, MD 21403 or (410) 990-4460 or http://abycinc.org/:


(1) ABYC H-25, Portable Marine Gasoline Fuel Systems, July 2010, IBR approved for § 1060.105(f).


(2) [Reserved]


[80 FR 9117, Feb. 19, 2015, as amended at 86 FR 34533, June 29, 2021]


§ 1060.815 What provisions apply to confidential information?

The provisions of 40 CFR 1068.10 apply for information you consider confidential.


[86 FR 34533, June 29, 2021]


§ 1060.820 How do I request a hearing?

(a) You may request a hearing under certain circumstances as described elsewhere in this part. To do this, you must file a written request, including a description of your objection and any supporting data, within 30 days after we make a decision.


(b) For a hearing you request under the provisions of this part, we will approve your request if we find that your request raises a substantial factual issue.


(c) If we agree to hold a hearing, we will use the procedures specified in 40 CFR part 1068, subpart G.


§ 1060.825 What reporting and recordkeeping requirements apply under this part?

(a) This part includes various requirements to submit and record data or other information. Unless we specify otherwise, store required records in any format and on any media and keep them readily available for eight years after you send an associated application for certification, or eight years after you generate the data if they do not support an application for certification. We may request these records at any time. You must promptly give us organized, written records in English if we ask for them. This paragraph (a) applies whether or not you rely on someone else to keep records on your behalf. We may require you to submit written records in an electronic format.


(b) The regulations in § 1060.255 and 40 CFR 1068.25 and 1068.101 describe your obligation to report truthful and complete information. This includes information not related to certification. Failing to properly report information and keep the records we specify violates 40 CFR 1068.101(a)(2), which may involve civil or criminal penalties.


(c) Send all reports and requests for approval to the Designated Compliance Officer (see § 1060.801).


(d) Any written information we require you to send to or receive from another company is deemed to be a required record under this section. Such records are also deemed to be submissions to EPA. We may require you to send us these records.


(e) Under the Paperwork Reduction Act (44 U.S.C. 3501 et seq.), the Office of Management and Budget approves the reporting and recordkeeping specified in the applicable regulations in this chapter. The following items illustrate the kind of reporting and recordkeeping we require for products regulated under this part:


(1) We specify the following requirements related to component and equipment certification in this part:


(i) In § 1060.20 we give an overview of principles for reporting information.


(ii) In subpart C of this part we identify a wide range of information required to certify engines.


(iii) In § 1060.301 we require manufacturers to make components, engines, or equipment available for our testing if we make such a request, and to keep records related to evaluation of production samples for verifying that the products are as specified in the certificate of conformity.


(iv) In § 1060.505 we specify information needs for establishing various changes to published test procedures.


(2) We specify the following requirements related to the general compliance provisions in 40 CFR part 1068:


(i) In 40 CFR 1068.5 we establish a process for evaluating good engineering judgment related to testing and certification.


(ii) In 40 CFR 1068.25 we describe general provisions related to sending and keeping information.


(iii) In 40 CFR 1068.27 we require manufacturers to make equipment available for our testing or inspection if we make such a request.


(iv) In 40 CFR 1068.105 we require equipment manufacturers to keep certain records related to duplicate labels from engine manufacturers.


(v) [Reserved]


(vi) In 40 CFR part 1068, subpart C, we identify several reporting and recordkeeping items for making demonstrations and getting approval related to various exemptions.


(vii) In 40 CFR part 1068, subpart D, we identify several reporting and recordkeeping items for making demonstrations and getting approval related to importing equipment.


(viii) In 40 CFR 1068.450 and 1068.455 we specify certain records related to testing production-line products in a selective enforcement audit.


(ix) In 40 CFR 1068.501 we specify certain records related to investigating and reporting emission-related defects.


(x) In 40 CFR 1068.525 and 1068.530 we specify certain records related to recalling nonconforming equipment.


(xi) In 40 CFR part 1068, subpart G, we specify certain records for requesting a hearing.


[86 FR 34533, June 29, 2021]


PART 1065 – ENGINE-TESTING PROCEDURES


Authority:42 U.S.C. 7401-7671q.


Source:70 FR 40516, July 13, 2005, unless otherwise noted.

Subpart A – Applicability and General Provisions

§ 1065.1 Applicability.

(a) This part describes the procedures that apply to testing we require for the following engines or for vehicles using the following engines:


(1) Locomotives we regulate under 40 CFR part 1033. For earlier model years, manufacturers may use the test procedures in this part or those specified in 40 CFR part 92 according to § 1065.10.


(2) Model year 2010 and later heavy-duty highway engines we regulate under 40 CFR part 86. For earlier model years, manufacturers may use the test procedures in this part or those specified in 40 CFR part 86, subpart N, according to § 1065.10.


(3) Nonroad diesel engines we regulate under 40 CFR part 1039 and stationary compression-ignition engines that are certified to the standards in 40 CFR part 1039, as specified in 40 CFR part 60, subpart IIII. For earlier model years, manufacturers may use the test procedures in this part or those specified in 40 CFR part 89 according to § 1065.10.


(4) Marine diesel engines we regulate under 40 CFR part 1042 and stationary compression-ignition engines that are certified to the standards in 40 CFR part 1042, as specified in 40 CFR part 60, subpart IIII. For earlier model years, manufacturers may use the test procedures in this part or those specified in 40 CFR part 94 according to § 1065.10.


(5) Marine spark-ignition engines we regulate under 40 CFR part 1045. For earlier model years, manufacturers may use the test procedures in this part or those specified in 40 CFR part 91 according to § 1065.10.


(6) Large nonroad spark-ignition engines we regulate under 40 CFR part 1048, and stationary engines that are certified to the standards in 40 CFR part 1048 or as otherwise specified in 40 CFR part 60, subpart JJJJ.


(7) Vehicles we regulate under 40 CFR part 1051 (such as snowmobiles and off-highway motorcycles) based on engine testing. See 40 CFR part 1051, subpart F, for standards and procedures that are based on vehicle testing.


(8) Small nonroad spark-ignition engines we regulate under 40 CFR part 1054 and stationary engines that are certified to the standards in 40 CFR part 1054 as specified in 40 CFR part 60, subpart JJJJ. For earlier model years, manufacturers may use the test procedures in this part or those specified in 40 CFR part 90 according to § 1065.10.


(b) The procedures of this part may apply to other types of engines, as described in this part and in the standard-setting part.


(c) The term “you” means anyone performing testing under this part other than EPA.


(1) This part is addressed primarily to manufacturers of engines, vehicles, equipment, and vessels, but it applies equally to anyone who does testing under this part for such manufacturers.


(2) This part applies to any manufacturer or supplier of test equipment, instruments, supplies, or any other goods or services related to the procedures, requirements, recommendations, or options in this part.


(d) Paragraph (a) of this section identifies the parts of the CFR that define emission standards and other requirements for particular types of engines. In this part, we refer to each of these other parts generically as the ”standard-setting part.” For example, 40 CFR part 1051 is always the standard-setting part for snowmobiles. Note that while 40 CFR part 86 is the standard-setting part for heavy-duty highway engines, this refers specifically to 40 CFR part 86, subpart A, and to certain portions of 40 CFR part 86, subpart N, as described in 40 CFR 86.1301.


(e) Unless we specify otherwise, the terms “procedures” and “test procedures” in this part include all aspects of engine testing, including the equipment specifications, calibrations, calculations, and other protocols and procedural specifications needed to measure emissions.


(f) For vehicles, equipment, or vessels subject to this part and regulated under vehicle-based, equipment-based, or vessel-based standards, use good engineering judgment to interpret the term “engine” in this part to include vehicles, equipment, or vessels, where appropriate.


(g) For additional information regarding the test procedures in this part, visit our website at www.epa.gov, and in particular https://www.epa.gov/vehicle-and-fuel-emissions-testing/engine-testing-regulations.


(h) This part describes procedures and specifications for measuring an engine’s exhaust emissions. While the measurements are geared toward engine-based measurements (in units of g/kW · hr), many of these provisions apply equally to vehicle-based measurements (in units of g/mile or g/kilometer). 40 CFR part 1066 describes the analogous procedures for vehicle-based emission measurements, and in many cases states that specific provisions of this part 1065 also apply for those vehicle-based measurements. Where material from this part 1065 applies for vehicle-based measurements under 40 CFR part 1066, it is sometimes necessary to include parenthetical statements in this part 1065 to properly cite secondary references that are different for vehicle-based testing. See 40 CFR part 1066 and the standard-setting part for additional information.


[73 FR 37288, June 30, 2008, as amended at 73 FR 59321, Oct. 8, 2008; 75 FR 23028, Apr. 30, 2010; 76 FR 37977, June 28, 2011; 76 FR 57437, Sept. 15, 2011; 79 FR 23752, Apr. 28, 2014; 86 FR 34533, June 29, 2021]


§ 1065.2 Submitting information to EPA under this part.

(a) You are responsible for statements and information in your applications for certification, requests for approved procedures, selective enforcement audits, laboratory audits, production-line test reports, field test reports, or any other statements you make to us related to this part 1065. If you provide statements or information to someone for submission to EPA, you are responsible for these statements and information as if you had submitted them to EPA yourself.


(b) In the standard-setting part and in 40 CFR 1068.101, we describe your obligation to report truthful and complete information and the consequences of failing to meet this obligation. See also 18 U.S.C. 1001 and 42 U.S.C. 7413(c)(2). This obligation applies whether you submit this information directly to EPA or through someone else.


(c) We may void any certificates or approvals associated with a submission of information if we find that you intentionally submitted false, incomplete, or misleading information. For example, if we find that you intentionally submitted incomplete information to mislead EPA when requesting approval to use alternate test procedures, we may void the certificates for all engine families certified based on emission data collected using the alternate procedures. This paragraph (c) would also apply if you ignore data from incomplete tests or from repeat tests with higher emission results.


(d) We may require an authorized representative of your company to approve and sign the submission, and to certify that all the information submitted is accurate and complete. This includes everyone who submits information, including manufacturers and others.


(e) See 40 CFR 1068.10 for provisions related to confidential information. Note however that under 40 CFR 2.301, emission data are generally not eligible for confidential treatment.


(f) Nothing in this part should be interpreted to limit our ability under Clean Air Act section 208 (42 U.S.C. 7542) to verify that engines conform to the regulations.


[73 FR 37289, June 30, 2008, as amended at 75 FR 23028, Apr. 30, 2010; 79 FR 23752, Apr. 28, 2014; 86 FR 34533, June 29, 2021]


§ 1065.5 Overview of this part 1065 and its relationship to the standard-setting part.

(a) This part specifies procedures that apply generally to testing various categories of engines. See the standard-setting part for directions in applying specific provisions in this part for a particular type of engine. Before using this part’s procedures, read the standard-setting part to answer at least the following questions:


(1) What duty cycles must I use for laboratory testing?


(2) Should I warm up the test engine before measuring emissions, or do I need to measure cold-start emissions during a warm-up segment of the duty cycle?


(3) Which exhaust constituents do I need to measure? Measure all exhaust constituents that are subject to emission standards, any other exhaust constituents needed for calculating emission rates, and any additional exhaust constituents as specified in the standard-setting part. Alternatively, you may omit the measurement of N2O and CH4 for an engine, provided it is not subject to an N2O or CH4 emission standard. If you omit the measurement of N2O and CH4, you must provide other information and/or data that will give us a reasonable basis for estimating the engine’s emission rates.


(4) Do any unique specifications apply for test fuels?


(5) What maintenance steps may I take before or between tests on an emission-data engine?


(6) Do any unique requirements apply to stabilizing emission levels on a new engine?


(7) Do any unique requirements apply to test limits, such as ambient temperatures or pressures?


(8) Is field testing required or allowed, and are there different emission standards or procedures that apply to field testing?


(9) Are there any emission standards specified at particular engine-operating conditions or ambient conditions?


(10) Do any unique requirements apply for durability testing?


(b) The testing specifications in the standard-setting part may differ from the specifications in this part. In cases where it is not possible to comply with both the standard-setting part and this part, you must comply with the specifications in the standard-setting part. The standard-setting part may also allow you to deviate from the procedures of this part for other reasons.


(c) The following table shows how this part divides testing specifications into subparts:


Table 1 of § 1065.5 – Description of Part 1065 Subparts

This subpart
Describes these specifications or procedures
Subpart AApplicability and general provisions.
Subpart BEquipment for testing.
Subpart CMeasurement instruments for testing.
Subpart DCalibration and performance verifications for measurement systems.
Subpart EHow to prepare engines for testing, including service accumulation.
Subpart FHow to run an emission test over a predetermined duty cycle.
Subpart GTest procedure calculations.
Subpart HFuels, engine fluids, analytical gases, and other calibration standards.
Subpart ISpecial procedures related to oxygenated fuels.
Subpart JHow to test with portable emission measurement systems (PEMS).

[73 FR 37289, June 30, 2008, as amended at 74 FR 56511, Oct. 30, 2009]


§ 1065.10 Other procedures.

(a) Your testing. The procedures in this part apply for all testing you do to show compliance with emission standards, with certain exceptions noted in this section. In some other sections in this part, we allow you to use other procedures (such as less precise or less accurate procedures) if they do not affect your ability to show that your engines comply with the applicable emission standards. This generally requires emission levels to be far enough below the applicable emission standards so that any errors caused by greater imprecision or inaccuracy do not affect your ability to state unconditionally that the engines meet all applicable emission standards.


(b) Our testing. These procedures generally apply for testing that we do to determine if your engines comply with applicable emission standards. We may perform other testing as allowed by the Act.


(c) Exceptions. We may allow or require you to use procedures other than those specified in this part in the following cases, which may apply to laboratory testing, field testing, or both. We intend to publicly announce when we allow or require such exceptions. All of the test procedures noted here as exceptions to the specified procedures are considered generically as “other procedures.” Note that the terms “special procedures” and “alternate procedures” have specific meanings; “special procedures” are those allowed by § 1065.10(c)(2) and “alternate procedures” are those allowed by § 1065.10(c)(7).


(1) The objective of the procedures in this part is to produce emission measurements equivalent to those that would result from measuring emissions during in-use operation using the same engine configuration as installed in a vehicle, equipment, or vessel. However, in unusual circumstances where these procedures may result in measurements that do not represent in-use operation, you must notify us if good engineering judgment indicates that the specified procedures cause unrepresentative emission measurements for your engines. Note that you need not notify us of unrepresentative aspects of the test procedure if measured emissions are equivalent to in-use emissions. This provision does not obligate you to pursue new information regarding the different ways your engine might operate in use, nor does it obligate you to collect any other in-use information to verify whether or not these test procedures are representative of your engine’s in-use operation. If you notify us of unrepresentative procedures under this paragraph (c)(1), we will cooperate with you to establish whether and how the procedures should be appropriately changed to result in more representative measurements. While the provisions of this paragraph (c)(1) allow us to be responsive to issues as they arise, we would generally work toward making these testing changes generally applicable through rulemaking. We will allow reasonable lead time for compliance with any resulting change in procedures. We will consider the following factors in determining the importance of pursuing changes to the procedures:


(i) Whether supplemental emission standards or other requirements in the standard-setting part address the type of operation of concern or otherwise prevent inappropriate design strategies.


(ii) Whether the unrepresentative aspect of the procedures affects your ability to show compliance with the applicable emission standards.


(iii) The extent to which the established procedures require the use of emission-control technologies or strategies that are expected to ensure a comparable degree of emission control under the in-use operation that differs from the specified procedures.


(2) You may request to use special procedures if your engine cannot be tested using the specified procedures. For example, this may apply if your engine cannot operate on the specified duty cycle. In this case, tell us in writing why you cannot satisfactorily test your engine using this part’s procedures and ask to use a different approach. We will approve your request if we determine that it would produce emission measurements that represent in-use operation and we determine that it can be used to show compliance with the requirements of the standard-setting part. Where we approve special procedures that differ substantially from the specified procedures, we may preclude you from participating in averaging, banking, and trading with the affected engine families.


(3) In a given model year, you may use procedures required for later model year engines without request. If you upgrade your testing facility in stages, you may rely on a combination of procedures for current and later model year engines as long as you can ensure, using good engineering judgment, that the combination you use for testing does not affect your ability to show compliance with the applicable emission standards.


(4) In a given model year, you may ask to use procedures allowed for earlier model year engines. We will approve this only if you show us that using the procedures allowed for earlier model years does not affect your ability to show compliance with the applicable emission standards.


(5) You may ask to use emission data collected using other procedures, such as those of the California Air Resources Board or the International Organization for Standardization. We will approve this only if you show us that using these other procedures does not affect your ability to show compliance with the applicable emission standards.


(6) During the 12 months following the effective date of any change in the provisions of this part 1065 (and 40 CFR part 1066 for vehicle testing), you may use data collected using procedures specified in the previously applicable version of this part 1065 (and 40 CFR part 1066 for vehicle testing). This also applies for changes to test procedures specified in the standard-setting part to the extent that these changes do not correspond to new emission standards. This paragraph (c)(6) does not restrict the use of carryover certification data otherwise allowed by the standard-setting part.


(7) You may request to use alternate procedures that are equivalent to the specified procedures, or procedures that are more accurate or more precise than the specified procedures. We may perform tests with your engines using either the approved alternate procedures or the specified procedures. The following provisions apply to requests for alternate procedures:


(i) Applications. Follow the instructions in § 1065.12.


(ii) Submission. Submit requests in writing to the Designated Compliance Officer.


(iii) Notification. We may approve your request by telling you directly, or we may issue guidance announcing our approval of a specific alternate procedure, which would make additional requests for approval unnecessary.


(d) Advance approval. If we require you to request approval to use other procedures under paragraph (c) of this section, you may not use them until we approve your request.


[70 FR 40516, July 13, 2005, as amended at 73 FR 37290, June 30, 2008; 75 FR 23028, Apr. 30, 2010; 79 FR 23752, Apr. 28, 2014; 80 FR 9118, Feb. 19, 2015; 81 FR 74162, Oct. 25, 2016]


§ 1065.12 Approval of alternate procedures.

(a) To get approval for an alternate procedure under § 1065.10(c), send the Designated Compliance Officer an initial written request describing the alternate procedure and why you believe it is equivalent to the specified procedure. Anyone may request alternate procedure approval. This means that an individual engine manufacturer may request to use an alternate procedure. This also means that an instrument manufacturer may request to have an instrument, equipment, or procedure approved as an alternate procedure to those specified in this part. We may approve your request based on this information alone, whether or not it includes all the information specified in this section. Where we determine that your original submission does not include enough information for us to determine that the alternate procedure is equivalent to the specified procedure, we may ask you to submit supplemental information showing that your alternate procedure is consistently and reliably at least as accurate and repeatable as the specified procedure.


(b) We may make our approval under this section conditional upon meeting other requirements or specifications. We may limit our approval, for example, to certain time frames, specific duty cycles, or specific emission standards. Based upon any supplemental information we receive after our initial approval, we may amend a previously approved alternate procedure to extend, limit, or discontinue its use. We intend to publicly announce alternate procedures that we approve.


(c) Although we will make every effort to approve only alternate procedures that completely meet our requirements, we may revoke our approval of an alternate procedure if new information shows that it is significantly not equivalent to the specified procedure.


If we do this, we will grant time to switch to testing using an allowed procedure, considering the following factors:


(1) The cost, difficulty, and availability to switch to a procedure that we allow.


(2) The degree to which the alternate procedure affects your ability to show that your engines comply with all applicable emission standards.


(3) Any relevant factors considered in our initial approval.


(d) If we do not approve your proposed alternate procedure based on the information in your initial request, we may ask you to send additional information to fully evaluate your request. While we consider the information specified in this paragraph (d) and the statistical criteria of paragraph (e) of this section to be sufficient to demonstrate equivalence, it may not be necessary to include all the information or meet the specified statistical criteria. For example, systems that do not meet the statistical criteria in paragraph (e) of this section because they have a small bias toward high emission results could be approved since they would not adversely affect your ability to demonstrate compliance with applicable standards.


(1) Theoretical basis. Give a brief technical description explaining why you believe the proposed alternate procedure should result in emission measurements equivalent to those using the specified procedure. You may include equations, figures, and references. You should consider the full range of parameters that may affect equivalence. For example, for a request to use a different NOX measurement procedure, you should theoretically relate the alternate detection principle to the specified detection principle over the expected concentration ranges for NO, NO2, and interference gases. For a request to use a different PM measurement procedure, you should explain the principles by which the alternate procedure quantifies particulate mass similarly to the specified procedures.


(2) Technical description. Describe briefly any hardware or software needed to perform the alternate procedure. You may include dimensioned drawings, flowcharts, schematics, and component specifications. Explain any necessary calculations or other data manipulation.


(3) Procedure execution. Describe briefly how to perform the alternate procedure and recommend a level of training an operator should have to achieve acceptable results.


Summarize the installation, calibration, operation, and maintenance procedures in a step-by-step format. Describe how any calibration is performed using NIST-traceable standards or other similar standards we approve. Calibration must be specified by using known quantities and must not be specified as a comparison with other allowed procedures.


(4) Data-collection techniques. Compare measured emission results using the proposed alternate procedure and the specified procedure, as follows:


(i) Both procedures must be calibrated independently to NIST-traceable standards or to other similar standards we approve.


(ii) Include measured emission results from all applicable duty cycles. Measured emission results should show that the test engine meets all applicable emission standards according to specified procedures.


(iii) Use statistical methods to evaluate the emission measurements, such as those described in paragraph (e) of this section.


(e) Absent any other directions from us, use a t-test and an F-test calculated according to § 1065.602 to evaluate whether your proposed alternate procedure is equivalent to the specified procedure. We may give you specific directions regarding methods for statistical analysis, or we may approve other methods that you propose. Such alternate methods may be more or less stringent than those specified in this paragraph (e). In determining the appropriate statistical criteria, we will consider the repeatability of measurements made with the reference procedure. For example, less stringent statistical criteria may be appropriate for measuring emission levels being so low that they adversely affect the repeatability of reference measurements. We recommend that you consult a statistician if you are unfamiliar with these statistical tests. Perform the tests as follows:


(1) Repeat measurements for all applicable duty cycles at least seven times for each procedure. You may use laboratory duty cycles to evaluate field-testing procedures.


Be sure to include all available results to evaluate the precision and accuracy of the proposed alternate procedure, as described in § 1065.2.


(2) Demonstrate the accuracy of the proposed alternate procedure by showing that it passes a two-sided t-test. Use an unpaired t-test, unless you show that a paired t-test is appropriate under both of the following provisions:


(i) For paired data, the population of the paired differences from which you sampled paired differences must be independent. That is, the probability of any given value of one paired difference is unchanged by knowledge of the value of another paired difference. For example, your paired data would violate this requirement if your series of paired differences showed a distinct increase or decrease that was dependent on the time at which they were sampled.


(ii) For paired data, the population of paired differences from which you sampled the paired differences must have a normal (i.e., Gaussian) distribution. If the population of paired difference is not normally distributed, consult a statistician for a more appropriate statistical test, which may include transforming the data with a mathematical function or using some kind of non-parametric test.


(3) Show that t is less than the critical t value, tcrit, tabulated in § 1065.602, for the following confidence intervals:


(i) 90% for a proposed alternate procedure for laboratory testing.


(ii) 95% for a proposed alternate procedure for field testing.


(4) Demonstrate the precision of the proposed alternate procedure by showing that it passes an F-test. Use a set of at least seven samples from the reference procedure and a set of at least seven samples from the alternate procedure to perform an F-test. The sets must meet the following requirements:


(i) Within each set, the values must be independent. That is, the probability of any given value in a set must be unchanged by knowledge of another value in that set. For example, your data would violate this requirement if a set showed a distinct increase or decrease that was dependent upon the time at which they were sampled.


(ii) For each set, the population of values from which you sampled must have a normal (i.e., Gaussian) distribution. If the population of values is not normally distributed, consult a statistician for a more appropriate statistical test, which may include transforming the data with a mathematical function or using some kind of non-parametric test.


(iii) The two sets must be independent of each other. That is, the probability of any given value in one set must be unchanged by knowledge of another value in the other set. For example, your data would violate this requirement if one value in a set showed a distinct increase or decrease that was dependent upon a value in the other set. Note that a trend of emission changes from an engine would not violate this requirement.


(iv) If you collect paired data for the paired t-test in paragraph (e)(2) in this section, use caution when selecting sets from paired data for the F-test. If you do this, select sets that do not mask the precision of the measurement procedure. We recommend selecting such sets only from data collected using the same engine, measurement instruments, and test cycle.


(5) Show that F is less than the critical F value, Fcrit, tabulated in § 1065.602. If you have several F-test results from several sets of data, show that the mean F-test value is less than the mean critical F value for all the sets. Evaluate Fcrit, based on the following confidence intervals:


(i) 90% for a proposed alternate procedure for laboratory testing.


(ii) 95% for a proposed alternate procedure for field testing.


[70 FR 40516, July 13, 2005, as amended at 73 FR 37290, June 30, 2008; 79 FR 23752, Apr. 28, 2014]


§ 1065.15 Overview of procedures for laboratory and field testing.

This section outlines the procedures to test engines that are subject to emission standards.


(a) In the standard-setting part, we set brake-specific emission standards in g/(kW · hr) (or g/(hp · hr)), for the following constituents:


(1) Total oxides of nitrogen, NOX.


(2) Hydrocarbon, HC, which may be expressed in the following ways:


(i) Total hydrocarbon, THC.


(ii) Nonmethane hydrocarbon, NMHC, which results from subtracting methane, CH4, from THC.


(iii) Nonmethane-nonethane hydrocarbon, NMNEHC, which results from subtracting methane, CH4, and ethane, C2H6, from THC.


(iv) Total hydrocarbon-equivalent, THCE, which results from adjusting THC mathematically to be equivalent on a carbon-mass basis.


(v) Nonmethane hydrocarbon-equivalent, NMHCE, which results from adjusting NMHC mathematically to be equivalent on a carbon-mass basis.


(3) Particulate matter, PM.


(4) Carbon monoxide, CO.


(5) Carbon dioxide, CO2.


(6) Methane, CH4.


(7) Nitrous oxide, N2O.


(b) Note that some engines are not subject to standards for all the emission constituents identified in paragraph (a) of this section. Note also that the standard-setting part may include standards for pollutants not listed in paragraph (a) of this section.


(c) We generally set brake-specific emission standards over test intervals and/or duty cycles, as follows:


(1) Engine operation. Testing may involve measuring emissions and work in a laboratory-type environment or in the field, as described in paragraph (f) of this section. For most laboratory testing, the engine is operated over one or more duty cycles specified in the standard-setting part. However, laboratory testing may also include non-duty cycle testing (such as simulation of field testing in a laboratory). For field testing, the engine is operated under normal in-use operation. The standard-setting part specifies how test intervals are defined for field testing. Refer to the definitions of “duty cycle” and “test interval” in § 1065.1001. Note that a single duty cycle may have multiple test intervals and require weighting of results from multiple test intervals to calculate a composite brake-specific emissions value to compare to the standard.


(2) Constituent determination. Determine the total mass of each constituent over a test interval by selecting from the following methods:


(i) Continuous sampling. In continuous sampling, measure the constituent’s concentration continuously from raw or dilute exhaust. Multiply this concentration by the continuous (raw or dilute) flow rate at the emission sampling location to determine the constituent’s flow rate. Sum the constituent’s flow rate continuously over the test interval. This sum is the total mass of the emitted constituent.


(ii) Batch sampling. In batch sampling, continuously extract and store a sample of raw or dilute exhaust for later measurement. Extract a sample proportional to the raw or dilute exhaust flow rate. You may extract and store a proportional sample of exhaust in an appropriate container, such as a bag, and then measure NOX, HC, CO, CO2, CH4, N2O, and CH2O concentrations in the container after the test interval. You may deposit PM from proportionally extracted exhaust onto an appropriate substrate, such as a filter. In this case, divide the PM by the amount of filtered exhaust to calculate the PM concentration. Multiply batch sampled concentrations by the total (raw or dilute) flow from which it was extracted during the test interval. This product is the total mass of the emitted constituent.


(iii) Combined sampling. You may use continuous and batch sampling simultaneously during a test interval, as follows:


(A) You may use continuous sampling for some constituents and batch sampling for others.


(B) You may use continuous and batch sampling for a single constituent, with one being a redundant measurement. See § 1065.201 for more information on redundant measurements.


(3) Work determination. Determine work over a test interval by one of the following methods:


(i) Speed and torque. Synchronously multiply speed and brake torque to calculate instantaneous values for engine brake power. Sum engine brake power over a test interval to determine total work.


(ii) Fuel consumed and brake-specific fuel consumption. Directly measure fuel consumed or calculate it with chemical balances of the fuel, intake air, and exhaust. To calculate fuel consumed by a chemical balance, you must also measure either intake-air flow rate or exhaust flow rate. Divide the fuel consumed during a test interval by the brake-specific fuel consumption to determine work over the test interval. For laboratory testing, calculate the brake-specific fuel consumption using fuel consumed and speed and torque over a test interval. For field testing, refer to the standard-setting part and § 1065.915 for selecting an appropriate value for brake-specific fuel consumption.


(d) Refer to § 1065.650 for calculations to determine brake-specific emissions.


(e) The following figure illustrates the allowed measurement configurations described in this part 1065:



(f) This part 1065 describes how to test engines in a laboratory-type environment or in the field.


(1) This affects test intervals and duty cycles as follows:


(i) For laboratory testing, you generally determine brake-specific emissions for duty-cycle testing by using an engine dynamometer in a laboratory or other environment. This typically consists of one or more test intervals, each defined by a duty cycle, which is a sequence of modes, speeds, and/or torques (or powers) that an engine must follow. If the standard-setting part allows it, you may also simulate field testing with an engine dynamometer in a laboratory or other environment.


(ii) Field testing consists of normal in-use engine operation while an engine is installed in a vehicle, equipment, or vessel rather than following a specific engine duty cycle. The standard-setting part specifies how test intervals are defined for field testing.


(2) The type of testing may also affect what test equipment may be used. You may use “lab-grade” test equipment for any testing. The term “lab-grade” refers to equipment that fully conforms to the applicable specifications of this part. For some testing you may alternatively use “field-grade” equipment. The term “field-grade” refers to equipment that fully conforms to the applicable specifications of subpart J of this part, but does not fully conform to other specifications of this part. You may use “field-grade” equipment for field testing. We also specify in this part and in the standard-setting parts certain cases in which you may use “field-grade” equipment for testing in a laboratory-type environment. (Note: Although “field-grade” equipment is generally more portable than “lab-grade” test equipment, portability is not relevant to whether equipment is considered to be “field-grade” or “lab-grade”.)


[70 FR 40516, July 13, 2005, as amended at 73 FR 37290, June 30, 2008; 75 FR 23028, Apr. 30, 2010; 76 FR 57437, Sept. 15, 2011; 79 FR 23753, Apr. 28, 2014; 81 FR 74162, Oct. 25, 2016]


§ 1065.20 Units of measure and overview of calculations.

(a) System of units. The procedures in this part generally follow the International System of Units (SI), as detailed in NIST Special Publication 811, which we incorporate by reference in § 1065.1010. The following exceptions apply:


(1) We designate angular speed, fn, of an engine’s crankshaft in revolutions per minute (r/min), rather than the SI unit of radians per second (rad/s). This is based on the commonplace use of r/min in many engine dynamometer laboratories.


(2) We designate brake-specific emissions in grams per kilowatt-hour (g/(kW · hr)), rather than the SI unit of grams per megajoule (g/MJ). In addition, we use the symbol hr to identify hour, rather than the SI convention of using h. This is based on the fact that engines are generally subject to emission standards expressed in g/kW · hr. If we specify engine standards in grams per horsepower · hour (g/(hp · hr)) in the standard-setting part, convert units as specified in paragraph (d) of this section.


(3) We generally designate temperatures in units of degrees Celsius ( °C) unless a calculation requires an absolute temperature. In that case, we designate temperatures in units of Kelvin (K). For conversion purposes throughout this part, 0 °C equals 273.15 K. Unless specified otherwise, always use absolute temperature values for multiplying or dividing by temperature.


(b) Concentrations. This part does not rely on amounts expressed in parts per million. Rather, we express such amounts in the following SI units:


(1) For ideal gases, µmol/mol, formerly ppm (volume).


(2) For all substances, cm
3/m
3, formerly ppm (volume).


(3) For all substances, mg/kg, formerly ppm (mass).


(c) Absolute pressure. Measure absolute pressure directly or calculate it as the sum of atmospheric pressure plus a differential pressure that is referenced to atmospheric pressure. Always use absolute pressure values for multiplying or dividing by pressure.


(d) Units conversion. Use the following conventions to convert units:


(1) Testing. You may record values and perform calculations with other units. For testing with equipment that involves other units, use the conversion factors from NIST Special Publication 811, as described in paragraph (a) of this section.


(2) Humidity. In this part, we identify humidity levels by specifying dewpoint, which is the temperature at which pure water begins to condense out of air. Use humidity conversions as described in § 1065.645.


(3) Emission standards. If your standard is in g/(hp · hr) units, convert kW to hp before any rounding by using the conversion factor of 1 hp (550 ft · lbf/s) = 0.7456999 kW. Round the final value for comparison to the applicable standard.


(e) Rounding. You are required to round certain final values, such as final emission values. You may round intermediate values when transferring data as long as you maintain at least six significant digits (which requires more than six decimal places for values less than 0.1), or all significant digits if fewer than six digits are available. Unless the standard-setting part specifies otherwise, do not round other intermediate values. Round values to the number of significant digits necessary to match the number of decimal places of the applicable standard or specification as described in this paragraph (e). Note that specifications expressed as percentages have infinite precision (as described in paragraph (e)(7) of this section). Use the following rounding convention, which is consistent with ASTM E29 and NIST SP 811:


(1) If the first (left-most) digit to be removed is less than five, remove all the appropriate digits without changing the digits that remain. For example, 3.141593 rounded to the second decimal place is 3.14.


(2) If the first digit to be removed is greater than five, remove all the appropriate digits and increase the lowest-value remaining digit by one. For example, 3.141593 rounded to the fourth decimal place is 3.1416.


(3) If the first digit to be removed is five with at least one additional non-zero digit following the five, remove all the appropriate digits and increase the lowest-value remaining digit by one. For example, 3.141593 rounded to the third decimal place is 3.142.


(4) If the first digit to be removed is five with no additional non-zero digits following the five, remove all the appropriate digits, increase the lowest-value remaining digit by one if it is odd and leave it unchanged if it is even. For example, 1.75 and 1.750 rounded to the first decimal place are 1.8; while 1.85 and 1.850 rounded to the first decimal place are also 1.8. Note that this rounding procedure will always result in an even number for the lowest-value digit.


(5) This paragraph (e)(5) applies if the regulation specifies rounding to an increment other than decimal places or powers of ten (to the nearest 0.01, 0.1, 1, 10, 100, etc.). To round numbers for these special cases, divide the quantity by the specified rounding increment. Round the result to the nearest whole number as described in paragraphs (e)(1) through (4) of this section. Multiply the rounded number by the specified rounding increment. This value is the desired result. For example, to round 0.90 to the nearest 0.2, divide 0.90 by 0.2 to get a result of 4.5, which rounds to 4. Multiplying 4 by 0.2 gives 0.8, which is the result of rounding 0.90 to the nearest 0.2.


(6) The following tables further illustrate the rounding procedures specified in this paragraph (e):


Quantity
Rounding increment
10
1
0.1
0.01
3.141593033.13.14
123,456.789123,460123,457123,456.8123,456.79
5.5001065.55.50
4.500044.54.50

Quantity
Rounding increment
25
3
0.5
0.02
229.267225228229.5229.26
62.500506362.562.50
87.5001008787.587.50
7.500067.57.50

(7) This paragraph (e)(7) applies where we specify a limit or tolerance as some percentage of another value (such as ±2% of a maximum concentration). You may show compliance with such specifications either by applying the percentage to the total value to calculate an absolute limit, or by converting the absolute value to a percentage by dividing it by the total value.


(i) Do not round either value (the absolute limit or the calculated percentage), except as specified in paragraph (e)(7)(ii) of this section. For example, assume we specify that an analyzer must have a repeatability of ±1% of the maximum concentration or better, the maximum concentration is 1059 ppm, and you determine repeatability to be ±6.3 ppm. In this example, you could calculate an absolute limit of ±10.59 ppm (1059 ppm × 0.01) or calculate that the 6.3 ppm repeatability is equivalent to a repeatability of 0.5949008498584%.


(ii) Prior to July 1, 2013, you may treat tolerances (and equivalent specifications) specified in percentages as having fixed rather than infinite precision. For example, 2% would be equivalent to 1.51% to 2.50% and 2.0% would be equivalent to 1.951% to 2.050%. Note that this allowance applies whether or not the percentage is explicitly specified as a percentage of another value.


(8) You may use measurement devices that incorporate internal rounding, consistent with the provisions of this paragraph (e)(8). You may use devices that use any rounding convention if they report six or more significant digits. You may use devices that report fewer than six digits, consistent with good engineering judgment and the accuracy, repeatability, and noise specifications of this part. Note that this provision does not necessarily require you to perform engineering analysis or keep records.


(f) Interpretation of ranges. Interpret a range as a tolerance unless we explicitly identify it as an accuracy, repeatability, linearity, or noise specification. See § 1065.1001 for the definition of tolerance. In this part, we specify two types of ranges:


(1) Whenever we specify a range by a single value and corresponding limit values above and below that value (such as X ±Y), target the associated control point to that single value (X). Examples of this type of range include “±10% of maximum pressure”, or “(30 ±10) kPa”. In these examples, you would target the maximum pressure or 30 kPa, respectively.


(2) Whenever we specify a range by the interval between two values, you may target any associated control point to any value within that range. An example of this type of range is “(40 to 50) kPa”.


(g) Scaling of specifications with respect to an applicable standard. Because this part 1065 is applicable to a wide range of engines and emission standards, some of the specifications in this part are scaled with respect to an engine’s applicable standard or maximum power. This ensures that the specification will be adequate to determine compliance, but not overly burdensome by requiring unnecessarily high-precision equipment. Many of these specifications are given with respect to a “flow-weighted mean” that is expected at the standard or during testing. Flow-weighted mean is the mean of a quantity after it is weighted proportional to a corresponding flow rate. For example, if a gas concentration is measured continuously from the raw exhaust of an engine, its flow-weighted mean concentration is the sum of the products (dry-to-wet corrected, if applicable) of each recorded concentration times its respective exhaust flow rate, divided by the sum of the recorded flow rates. As another example, the bag concentration from a CVS system is the same as the flow-weighted mean concentration, because the CVS system itself flow-weights the bag concentration. Refer to § 1065.602 for information needed to estimate and calculate flow-weighted means. Wherever a specification is scaled to a value based upon an applicable standard, interpret the standard to be the family emission limit if the engine is certified under an emission credit program in the standard-setting part.


[70 FR 40516, July 13, 2005, as amended at 73 FR 37292, June 30, 2008; 76 FR 57438, Sept. 15, 2011; 79 FR 23753, Apr. 28, 2014]


§ 1065.25 Recordkeeping.

(a) The procedures in this part include various requirements to record data or other information. Refer to the standard-setting part and § 1065.695 regarding specific recordkeeping requirements.


(b) You must promptly send us organized, written records in English if we ask for them. We may review them at any time.


(c) We may waive specific reporting or recordkeeping requirements we determine to be unnecessary for the purposes of this part and the standard-setting part. Note that while we will generally keep the records required by this part, we are not obligated to keep records we determine to be unnecessary for us to keep. For example, while we require you to keep records for invalid tests so that we may verify that your invalidation was appropriate, it is not necessary for us to keep records for our own invalid tests.


[79 FR 23753, Apr. 28, 2014]


Subpart B – Equipment Specifications

§ 1065.101 Overview.

(a) This subpart specifies equipment, other than measurement instruments, related to emission testing. The provisions of this subpart apply for all engine dynamometer testing where engine speeds and loads are controlled to follow a prescribed duty cycle. See subpart J of this part to determine which of the provisions of this subpart apply for field testing. This equipment includes three broad categories-dynamometers, engine fluid systems (such as fuel and intake-air systems), and emission-sampling hardware.


(b) Other related subparts in this part identify measurement instruments (subpart C), describe how to evaluate the performance of these instruments (subpart D), and specify engine fluids and analytical gases (subpart H).


(c) Subpart J of this part describes additional equipment that is specific to field testing.


(d) Figures 1 and 2 of this section illustrate some of the possible configurations of laboratory equipment. These figures are schematics only; we do not require exact conformance to them. Figure 1 of this section illustrates the equipment specified in this subpart and gives some references to sections in this subpart. Figure 2 of this section illustrates some of the possible configurations of a full-flow dilution, constant-volume sampling (CVS) system. Not all possible CVS configurations are shown.


(e) Dynamometer testing involves engine operation over speeds and loads that are controlled to a prescribed duty cycle. Field testing involves measuring emissions over normal in-use operation of a vehicle or piece of equipment. Field testing does not involve operating an engine over a prescribed duty cycle.




[70 FR 40516, July 13, 2005, as amended at 73 FR 37292, June 30, 2008]


§ 1065.110 Work inputs and outputs, accessory work, and operator demand.

(a) Work. Use good engineering judgment to simulate all engine work inputs and outputs as they typically would operate in use. Account for work inputs and outputs during an emission test by measuring them; or, if they are small, you may show by engineering analysis that disregarding them does not affect your ability to determine the net work output by more than ±0.5% of the net expected work output over the test interval. Use equipment to simulate the specific types of work, as follows:


(1) Shaft work. Use an engine dynamometer that is able to meet the cycle-validation criteria in § 1065.514 over each applicable duty cycle.


(i) You may use eddy-current and water-brake dynamometers for any testing that does not involve engine motoring, which is identified by negative torque commands in a reference duty cycle. See the standard setting part for reference duty cycles that are applicable to your engine.


(ii) You may use alternating-current or direct-current motoring dynamometers for any type of testing.


(iii) You may use one or more dynamometers.


(iv) You may use any device that is already installed on a vehicle, equipment, or vessel to absorb work from the engine’s output shaft(s). Examples of these types of devices include a vessel’s propeller and a locomotive’s generator.


(2) Electrical work. Use one or more of the following to simulate electrical work:


(i) Use storage batteries or capacitors that are of the type and capacity installed in use.


(ii) Use motors, generators, and alternators that are of the type and capacity installed in use.


(iii) Use a resistor load bank to simulate electrical loads.


(3) Pump, compressor, and turbine work. Use pumps, compressors, and turbines that are of the type and capacity installed in use. Use working fluids that are of the same type and thermodynamic state as normal in-use operation.


(b) Laboratory work inputs. You may supply any laboratory inputs of work to the engine. For example, you may supply electrical work to the engine to operate a fuel system, and as another example you may supply compressor work to the engine to actuate pneumatic valves. We may ask you to show by engineering analysis your accounting of laboratory work inputs to meet the criterion in paragraph (a) of this section.


(c) Engine accessories. You must either install or account for the work of engine accessories required to fuel, lubricate, or heat the engine, circulate coolant to the engine, or to operate aftertreatment devices. Operate the engine with these accessories installed or accounted for during all testing operations, including mapping. If these accessories are not powered by the engine during a test, account for the work required to perform these functions from the total work used in brake-specific emission calculations. For air-cooled engines only, subtract externally powered fan work from total work. We may ask you to show by engineering analysis your accounting of engine accessories to meet the criterion in paragraph (a) of this section.


(d) Engine starter. You may install a production-type starter.


(e) Operator demand for shaft work. Operator demand is defined in § 1065.1001. Command the operator demand and the dynamometer(s) to follow a prescribed duty cycle with set points for engine speed and torque as specified in § 1065.512. Refer to the standard-setting part to determine the specifications for your duty cycle(s). Use a mechanical or electronic input to control operator demand such that the engine is able to meet the validation criteria in § 1065.514 over each applicable duty cycle. Record feedback values for engine speed and torque as specified in § 1065.512. Using good engineering judgment, you may improve control of operator demand by altering on-engine speed and torque controls. However, if these changes result in unrepresentative testing, you must notify us and recommend other test procedures under § 1065.10(c)(1).


(f) Other engine inputs. If your electronic control module requires specific input signals that are not available during dynamometer testing, such as vehicle speed or transmission signals, you may simulate the signals using good engineering judgment. Keep records that describe what signals you simulate and explain why these signals are necessary for representative testing.


[70 FR 40516, July 13, 2005, as amended at 73 FR 37292, June 30, 2008]


§ 1065.120 Fuel properties and fuel temperature and pressure.

(a) Use fuels as specified in the standard-setting part, or as specified in subpart H of this part if fuels are not specified in the standard-setting part.


(b) If the engine manufacturer specifies fuel temperature and pressure tolerances and the location where they are to be measured, then measure the fuel temperature and pressure at the specified location to show that you are within these tolerances throughout testing.


(c) If the engine manufacturer does not specify fuel temperature and pressure tolerances, use good engineering judgment to set and control fuel temperature and pressure in a way that represents typical in-use fuel temperatures and pressures.


[70 FR 40516, July 13, 2005, as amended at 73 FR 37293, June 30, 2008]


§ 1065.122 Engine cooling and lubrication.

(a) Engine cooling. Cool the engine during testing so its intake-air, oil, coolant, block, and head temperatures are within their expected ranges for normal operation. You may use auxiliary coolers and fans.


(1) For air-cooled engines only, if you use auxiliary fans you must account for work input to the fan(s) according to § 1065.110.


(2) See § 1065.125 for more information related to intake-air cooling.


(3) See § 1065.127 for more information related to exhaust gas recirculation cooling.


(4) Measure temperatures at the manufacturer-specified locations. If the manufacturer does not specify temperature measurement locations, then use good engineering judgment to monitor intake-air, oil, coolant, block, and head temperatures to ensure that they are in their expected ranges for normal operation.


(b) Forced cooldown. You may install a forced cooldown system for an engine and an exhaust aftertreatment device according to § 1065.530(a)(1).


(c) Lubricating oil. Use lubricating oils specified in § 1065.740. For two-stroke engines that involve a specified mixture of fuel and lubricating oil, mix the lubricating oil with the fuel according to the manufacturer’s specifications.


(d) Coolant. For liquid-cooled engines, use coolant as specified in § 1065.745.


[70 FR 40516, July 13, 2005, as amended at 73 FR 37293, June 30, 2008]


§ 1065.125 Engine intake air.

(a) Use the intake-air system installed on the engine or one that represents a typical in-use configuration. This includes the charge-air cooling and exhaust gas recirculation systems.


(b) Measure temperature, humidity, and atmospheric pressure near the entrance of the furthest upstream engine or in-use intake system component. This would generally be near the engine’s air filter, or near the inlet to the in-use air intake system for engines that have no air filter. For engines with multiple intakes, make measurements near the entrance of each intake.


(1) Pressure. You may use a single shared atmospheric pressure meter as long as your laboratory equipment for handling intake air maintains ambient pressure at all intakes within ±1 kPa of the shared atmospheric pressure. For engines with multiple intakes with separate atmospheric pressure measurements at each intake, use an average value for verifying compliance to § 1065.520(b)(2).


(2) Humidity. You may use a single shared humidity measurement for intake air as long as your equipment for handling intake air maintains dewpoint at all intakes to within ±0.5 °C of the shared humidity measurement. For engines with multiple intakes with separate humidity measurements at each intake, use a flow-weighted average humidity for NOX corrections. If individual flows of each intake are not measured, use good engineering judgment to estimate a flow-weighted average humidity.


(3) Temperature. Good engineering judgment may require that you shield the temperature sensors or move them upstream of an elbow in the laboratory intake system to prevent measurement errors due to radiant heating from hot engine surfaces or in-use intake system components. You must limit the distance between the temperature sensor and the entrance to the furthest upstream engine or in-use intake system component to no more than 12 times the outer hydraulic diameter of the entrance to the furthest upstream engine or in-use intake system component. However, you may exceed this limit if you use good engineering judgment to show that the temperature at the furthest upstream engine or in-use intake system component meets the specification in paragraph (c) of this section. For engines with multiple intakes, use a flow-weighted average value to verify compliance with the specification in paragraph (c) of this section. If individual flows of each intake are not measured, you may use good engineering judgment to estimate a flow-weighted average temperature. You may also verify that each individual intake complies with the specification in paragraph (c) of this section.


(c) Maintain the temperature of intake air to (25 ±5) °C, except as follows:


(1) Follow the standard-setting part if it specifies different temperatures.


(2) For engines above 560 kW, you may use 35 °C as the upper bound of the tolerance. However, your system must be capable of controlling the temperature to the 25 °C setpoint for any steady-state operation at >30% of maximum engine power.


(3) You may ask us to allow you to apply a different setpoint for intake air temperature if it is necessary to remain consistent with the provisions of § 1065.10(c)(1) for testing during which ambient temperature will be outside this range.


(d) Use an intake-air restriction that represents production engines. Make sure the intake-air restriction is between the manufacturer’s specified maximum for a clean filter and the manufacturer’s specified maximum allowed. Measure the static differential pressure of the restriction at the location and at the speed and torque set points specified by the manufacturer. If the manufacturer does not specify a location, measure this pressure upstream of any turbocharger or exhaust gas recirculation system connection to the intake air system. If the manufacturer does not specify speed and torque points, measure this pressure while the engine outputs maximum power. As the manufacturer, you are liable for emission compliance for all values up to the maximum restriction you specify for a particular engine.


(e) This paragraph (e) includes provisions for simulating charge-air cooling in the laboratory. This approach is described in paragraph (e)(1) of this section. Limits on using this approach are described in paragraphs (e)(2) and (3) of this section.


(1) Use a charge-air cooling system with a total intake-air capacity that represents production engines’ in-use installation. Design any laboratory charge-air cooling system to minimize accumulation of condensate. Drain any accumulated condensate. Before starting a duty cycle (or preconditioning for a duty cycle), completely close all drains that would normally be closed during in-use operation. Keep those drains closed during the emission test. Maintain coolant conditions as follows:


(i) Maintain a coolant temperature of at least 20 °C at the inlet to the charge-air cooler throughout testing. We recommend maintaining a coolant temperature of 25 ±5 °C at the inlet of the charge-air cooler.


(ii) At the engine conditions specified by the manufacturer, set the coolant flow rate to achieve an air temperature within ±5 °C of the value specified by the manufacturer after the charge-air cooler’s outlet. Measure the air-outlet temperature at the location specified by the manufacturer. Use this coolant flow rate set point throughout testing. If the engine manufacturer does not specify engine conditions or the corresponding charge-air cooler air outlet temperature, set the coolant flow rate at maximum engine power to achieve a charge-air cooler air outlet temperature that represents in-use operation.


(iii) If the engine manufacturer specifies pressure-drop limits across the charge-air cooling system, ensure that the pressure drop across the charge-air cooling system at engine conditions specified by the manufacturer is within the manufacturer’s specified limit(s). Measure the pressure drop at the manufacturer’s specified locations.


(2) Using a constant flow rate as described in paragraph (e)(1) of this section may result in unrepresentative overcooling of the intake air. The provisions of this paragraph (e)(2) apply instead of the provisions of § 1065.10(c)(1) for this simulation. Our allowance to cool intake air as specified in this paragraph (e) does not affect your liability for field testing or for laboratory testing that is done in a way that better represents in-use operation. Where we determine that this allowance adversely affects your ability to demonstrate that your engines would comply with emission standards under in-use conditions, we may require you to use more sophisticated setpoints and controls of charge-air pressure drop, coolant temperature, and flow rate to achieve more representative results.


(3) This approach does not apply for field testing. You may not correct measured emission levels from field testing to account for any differences caused by the simulated cooling in the laboratory.


[70 FR 40516, July 13, 2005, as amended at 73 FR 37293, June 30, 2008; 73 FR 59321, Oct. 8, 2008; 75 FR 23029, Apr. 30, 2010; 76 FR 57440, Sept. 15, 2011]


§ 1065.127 Exhaust gas recirculation.

Use the exhaust gas recirculation (EGR) system installed with the engine or one that represents a typical in-use configuration. This includes any applicable EGR cooling devices.


§ 1065.130 Engine exhaust.

(a) General. Use the exhaust system installed with the engine or one that represents a typical in-use configuration. This includes any applicable aftertreatment devices. We refer to exhaust piping as an exhaust stack; this is equivalent to a tailpipe for vehicle configurations.


(b) Aftertreatment configuration. If you do not use the exhaust system installed with the engine, configure any aftertreatment devices as follows:


(1) Position any aftertreatment device so its distance from the nearest exhaust manifold flange or turbocharger outlet is within the range specified by the engine manufacturer in the application for certification. If this distance is not specified, position aftertreatment devices to represent typical in-use vehicle configurations.


(2) You may use exhaust tubing that is not from the in-use exhaust system upstream of any aftertreatment device that is of diameter(s) typical of in-use configurations. If you use exhaust tubing that is not from the in-use exhaust system upstream of any aftertreatment device, position each aftertreatment device according to paragraph (b)(1) of this section.


(c) Sampling system connections. Connect an engine’s exhaust system to any raw sampling location or dilution stage, as follows:


(1) Minimize laboratory exhaust tubing lengths and use a total length of laboratory tubing of no more than 10 m or 50 outside diameters, whichever is greater. The start of laboratory exhaust tubing should be specified as the exit of the exhaust manifold, turbocharger outlet, last aftertreatment device, or the in-use exhaust system, whichever is furthest downstream. The end of laboratory exhaust tubing should be specified as the sample point, or first point of dilution. If laboratory exhaust tubing consists of several different outside tubing diameters, count the number of diameters of length of each individual diameter, then sum all the diameters to determine the total length of exhaust tubing in diameters. Use the mean outside diameter of any converging or diverging sections of tubing. Use outside hydraulic diameters of any noncircular sections. For multiple stack configurations where all the exhaust stacks are combined, the start of the laboratory exhaust tubing may be taken at the last joint of where all the stacks are combined.


(2) You may install short sections of flexible laboratory exhaust tubing at any location in the engine or laboratory exhaust systems. You may use up to a combined total of 2 m or 10 outside diameters of flexible exhaust tubing.


(3) Insulate any laboratory exhaust tubing downstream of the first 25 outside diameters of length.


(4) Use laboratory exhaust tubing materials that are smooth-walled, electrically conductive, and not reactive with exhaust constituents. Stainless steel is an acceptable material.


(5) We recommend that you use laboratory exhaust tubing that has either a wall thickness of less than 2 mm or is air gap-insulated to minimize temperature differences between the wall and the exhaust.


(6) We recommend that you connect multiple exhaust stacks from a single engine into one stack upstream of any emission sampling. For raw or dilute partial-flow emission sampling, to ensure mixing of the multiple exhaust streams before emission sampling, we recommend a minimum Reynolds number, Re #, of 4000 for the combined exhaust stream, where Re # is based on the inside diameter of the combined flow at the first sampling point. You may configure the exhaust system with turbulence generators, such as orifice plates or fins, to achieve good mixing; inclusion of turbulence generators may be required for Re # less than 4000 to ensure good mixing. Re # is defined in § 1065.640. For dilute full-flow (CVS) emission sampling, you may configure the exhaust system without regard to mixing in the laboratory section of the raw exhaust. For example you may size the laboratory section to reduce its pressure drop even if the Re #, in the laboratory section of the raw exhaust is less than 4000.


(d) In-line instruments. You may insert instruments into the laboratory exhaust tubing, such as an in-line smoke meter. If you do this, you may leave a length of up to 5 outside diameters of laboratory exhaust tubing uninsulated on each side of each instrument, but you must leave a length of no more than 25 outside diameters of laboratory exhaust tubing uninsulated in total, including any lengths adjacent to in-line instruments.


(e) Leaks. Minimize leaks sufficiently to ensure your ability to demonstrate compliance with the applicable standards in this chapter. We recommend performing carbon balance error verification as described in § 1065.543 to verify exhaust system integrity.


(f) Grounding. Electrically ground the entire exhaust system.


(g) Forced cooldown. You may install a forced cooldown system for an exhaust aftertreatment device according to § 1065.530(a)(1)(i).


(h) Exhaust restriction. As the manufacturer, you are liable for emission compliance for all values up to the maximum restriction(s) you specify for a particular engine. Measure and set exhaust restriction(s) at the location(s) and at the engine speed and torque values specified by the manufacturer. Also, for variable-restriction aftertreatment devices, measure and set exhaust restriction(s) at the aftertreatment condition (degreening/aging and regeneration/loading level) specified by the manufacturer. If the manufacturer does not specify a location, measure this pressure downstream of any turbocharger. If the manufacturer does not specify speed and torque points, measure pressure while the engine produces maximum power. Use an exhaust-restriction setpoint that represents a typical in-use value, if available. If a typical in-use value for exhaust restriction is not available, set the exhaust restriction at (80 to 100)% of the maximum exhaust restriction specified by the manufacturer, or if the maximum is 5 kPa or less, the set point must be no less than 1.0 kPa from the maximum. For example, if the maximum back pressure is 4.5 kPa, do not use an exhaust restriction set point that is less than 3.5 kPa.


(i) Open crankcase emissions. If the standard-setting part requires measuring open crankcase emissions, you may either measure open crankcase emissions separately using a method that we approve in advance, or route open crankcase emissions directly into the exhaust system for emission measurement. If the engine is not already configured to route open crankcase emissions for emission measurement, route open crankcase emissions as follows:


(1) Use laboratory tubing materials that are smooth-walled, electrically conductive, and not reactive with crankcase emissions. Stainless steel is an acceptable material. Minimize tube lengths. We also recommend using heated or thin-walled or air gap-insulated tubing to minimize temperature differences between the wall and the crankcase emission constituents.


(2) Minimize the number of bends in the laboratory crankcase tubing and maximize the radius of any unavoidable bend.


(3) Use laboratory crankcase exhaust tubing that meets the engine manufacturer’s specifications for crankcase back pressure.


(4) Connect the crankcase exhaust tubing into the raw exhaust downstream of any aftertreatment system, downstream of any installed exhaust restriction, and sufficiently upstream of any sample probes to ensure complete mixing with the engine’s exhaust before sampling. Extend the crankcase exhaust tube into the free stream of exhaust to avoid boundary-layer effects and to promote mixing. You may orient the crankcase exhaust tube’s outlet in any direction relative to the raw exhaust flow.


[73 FR 37293, June 30, 2008, as amended at 79 FR 23754, Apr. 28, 2014; 86 FR 34534, June 29, 2021]


§ 1065.140 Dilution for gaseous and PM constituents.

(a) General. You may dilute exhaust with ambient air, purified air, or nitrogen. References in this part to “dilution air” may include any of these. For gaseous emission measurement, the dilution air must be at least 15 °C. Note that the composition of the dilution air affects some gaseous emission measurement instruments’ response to emissions. We recommend diluting exhaust at a location as close as possible to the location where ambient air dilution would occur in use. Dilution may occur in a single stage or in multiple stages. For dilution in multiple stages, the first stage is considered primary dilution and later stages are considered secondary dilution.


(b) Dilution-air conditions and background concentrations. Before dilution air is mixed with exhaust, you may precondition it by increasing or decreasing its temperature or humidity. You may also remove constituents to reduce their background concentrations. The following provisions apply to removing constituents or accounting for background concentrations:


(1) You may measure constituent concentrations in the dilution air and compensate for background effects on test results. See § 1065.650 for calculations that compensate for background concentrations (40 CFR 1066.610 for vehicle testing).


(2) Measure these background concentrations the same way you measure diluted exhaust constituents, or measure them in a way that does not affect your ability to demonstrate compliance with the applicable standards. For example, you may use the following simplifications for background sampling:


(i) You may disregard any proportional sampling requirements.


(ii) You may use unheated gaseous sampling systems.


(iii) You may use unheated PM sampling systems.


(iv) You may use continuous sampling if you use batch sampling for diluted emissions.


(v) You may use batch sampling if you use continuous sampling for diluted emissions.


(3) For removing background PM, we recommend that you filter all dilution air, including primary full-flow dilution air, with high-efficiency particulate air (HEPA) filters that have an initial minimum collection efficiency specification of 99.97% (see § 1065.1001 for procedures related to HEPA-filtration efficiencies). Ensure that HEPA filters are installed properly so that background PM does not leak past the HEPA filters. If you choose to correct for background PM without using HEPA filtration, demonstrate that the background PM in the dilution air contributes less than 50% to the net PM collected on the sample filter. You may correct net PM without restriction if you use HEPA filtration.


(c) Full-flow dilution; constant-volume sampling (CVS). You may dilute the full flow of raw exhaust in a dilution tunnel that maintains a nominally constant volume flow rate, molar flow rate or mass flow rate of diluted exhaust, as follows:


(1) Construction. Use a tunnel with inside surfaces of 300 series stainless steel. Electrically ground the entire dilution tunnel. We recommend a thin-walled and insulated dilution tunnel to minimize temperature differences between the wall and the exhaust gases. You may not use any flexible tubing in the dilution tunnel upstream of the PM sample probe. You may use nonconductive flexible tubing downstream of the PM sample probe and upstream of the CVS flow meter; use good engineering judgment to select a tubing material that is not prone to leaks, and configure the tubing to ensure smooth flow at the CVS flow meter.


(2) Pressure control. Maintain static pressure at the location where raw exhaust is introduced into the tunnel within ±1.2 kPa of atmospheric pressure. You may use a booster blower to control this pressure. If you test using more careful pressure control and you show by engineering analysis or by test data that you require this level of control to demonstrate compliance at the applicable standards, we will maintain the same level of static pressure control when we test.


(3) Mixing. Introduce raw exhaust into the tunnel by directing it downstream along the centerline of the tunnel. If you dilute directly from the exhaust stack, the end of the exhaust stack is considered to be the start of the dilution tunnel. You may introduce a fraction of dilution air radially from the tunnel’s inner surface to minimize exhaust interaction with the tunnel walls. You may configure the system with turbulence generators such as orifice plates or fins to achieve good mixing. We recommend a minimum Reynolds number, Re #, of 4000 for the diluted exhaust stream, where Re # is based on the inside diameter of the dilution tunnel. Re # is defined in § 1065.640.


(4) Flow measurement preconditioning. You may condition the diluted exhaust before measuring its flow rate, as long as this conditioning takes place downstream of any heated HC or PM sample probes, as follows:


(i) You may use flow straighteners, pulsation dampeners, or both of these.


(ii) You may use a filter.


(iii) You may use a heat exchanger to control the temperature upstream of any flow meter, but you must take steps to prevent aqueous condensation as described in paragraph (c)(6) of this section.


(5) Flow measurement. Section 1065.240 describes measurement instruments for diluted exhaust flow.


(6) Aqueous condensation. This paragraph (c)(6) describes how you must address aqueous condensation in the CVS. As described below, you may meet these requirements by preventing or limiting aqueous condensation in the CVS from the exhaust inlet to the last emission sample probe. See that paragraph for provisions related to the CVS between the last emission sample probe and the CVS flow meter. You may heat and/or insulate the dilution tunnel walls, as well as the bulk stream tubing downstream of the tunnel to prevent or limit aqueous condensation. Where we allow aqueous condensation to occur, use good engineering judgment to ensure that the condensation does not affect your ability to demonstrate that your engines comply with the applicable standards (see § 1065.10(a)).


(i) Preventing aqueous condensation. To prevent condensation, you must keep the temperature of internal surfaces, excluding any sample probes, above the dewpoint of the dilute exhaust passing through the CVS tunnel. Use good engineering judgment to monitor temperatures in the CVS. For the purposes of this paragraph (c)(6), assume that aqueous condensation is pure water condensate only, even though the definition of “aqueous condensation” in § 1065.1001 includes condensation of any constituents that contain water. No specific verification check is required under this paragraph (c)(6)(i), but we may ask you to show how you comply with this requirement. You may use engineering analysis, CVS tunnel design, alarm systems, measurements of wall temperatures, and calculation of water dewpoint to demonstrate compliance with this requirement. For optional CVS heat exchangers, you may use the lowest water temperature at the inlet(s) and outlet(s) to determine the minimum internal surface temperature.


(ii) Limiting aqueous condensation. This paragraph (c)(6)(ii) specifies limits of allowable condensation and requires you to verify that the amount of condensation that occurs during each test interval does not exceed the specified limits.


(A) Use chemical balance equations in § 1065.655 to calculate the mole fraction of water in the dilute exhaust continuously during testing. Alternatively, you may continuously measure the mole fraction of water in the dilute exhaust prior to any condensation during testing. Use good engineering judgment to select, calibrate and verify water analyzers/detectors. The linearity verification requirements of § 1065.307 do not apply to water analyzers/detectors used to correct for the water content in exhaust samples.


(B) Use good engineering judgment to select and monitor locations on the CVS tunnel walls prior to the last emission sample probe. If you are also verifying limited condensation from the last emission sample probe to the CVS flow meter, use good engineering judgment to select and monitor locations on the CVS tunnel walls, optional CVS heat exchanger, and CVS flow meter. For optional CVS heat exchangers, you may use the lowest water temperature at the inlet(s) and outlet(s) to determine the minimum internal surface temperature. Identify the minimum surface temperature on a continuous basis.


(C) Identify the maximum potential mole fraction of dilute exhaust lost on a continuous basis during the entire test interval. This value must be less than or equal to 0.02. Calculate on a continuous basis the mole fraction of water that would be in equilibrium with liquid water at the measured minimum surface temperature. Subtract this mole fraction from the mole fraction of water that would be in the exhaust without condensation (either measured or from the chemical balance), and set any negative values to zero. This difference is the potential mole fraction of the dilute exhaust that would be lost due to water condensation on a continuous basis.


(D) Integrate the product of the molar flow rate of the dilute exhaust and the potential mole fraction of dilute exhaust lost, and divide by the totalized dilute exhaust molar flow over the test interval. This is the potential mole fraction of the dilute exhaust that would be lost due to water condensation over the entire test interval. Note that this assumes no re-evaporation. This value must be less than or equal to 0.005.


(7) Flow compensation. Maintain nominally constant molar, volumetric or mass flow of diluted exhaust. You may maintain nominally constant flow by either maintaining the temperature and pressure at the flow meter or by directly controlling the flow of diluted exhaust. You may also directly control the flow of proportional samplers to maintain proportional sampling. For an individual test, verify proportional sampling as described in § 1065.545.


(d) Partial-flow dilution (PFD). You may dilute a partial flow of raw or previously diluted exhaust before measuring emissions. Section 1065.240 describes PFD-related flow measurement instruments. PFD may consist of constant or varying dilution ratios as described in paragraphs (d)(2) and (3) of this section. An example of a constant dilution ratio PFD is a “secondary dilution PM” measurement system.


(1) Applicability. (i) You may use PFD to extract a proportional raw exhaust sample for any batch or continuous PM emission sampling over any transient duty cycle, any steady-state duty cycle, or any ramped-modal cycle.


(ii) You may use PFD to extract a proportional raw exhaust sample for any batch or continuous gaseous emission sampling over any transient duty cycle, any steady-state duty cycle, or any ramped-modal cycle.


(iii) You may use PFD to extract a proportional raw exhaust sample for any batch or continuous field-testing.


(iv) You may use PFD to extract a proportional diluted exhaust sample from a CVS for any batch or continuous emission sampling.


(v) You may use PFD to extract a constant raw or diluted exhaust sample for any continuous emission sampling.


(vi) You may use PFD to extract a constant raw or diluted exhaust sample for any steady-state emission sampling.


(2) Constant dilution-ratio PFD. Do one of the following for constant dilution-ratio PFD:


(i) Dilute an already proportional flow. For example, you may do this as a way of performing secondary dilution from a CVS tunnel to achieve overall dilution ratio for PM sampling.


(ii) Continuously measure constituent concentrations. For example, you might dilute to precondition a sample of raw exhaust to control its temperature, humidity, or constituent concentrations upstream of continuous analyzers. In this case, you must take into account the dilution ratio before multiplying the continuous concentration by the sampled exhaust flow rate.


(iii) Extract a proportional sample from a separate constant dilution ratio PFD system. For example, you might use a variable-flow pump to proportionally fill a gaseous storage medium such as a bag from a PFD system. In this case, the proportional sampling must meet the same specifications as varying dilution ratio PFD in paragraph (d)(3) of this section.


(iv) For each mode of a discrete-mode test (such as a locomotive notch setting or a specific setting for speed and torque), use a constant dilution ratio for any PM sampling. You must change the overall PM sampling system dilution ratio between modes so that the dilution ratio on the mode with the highest exhaust flow rate meets § 1065.140(e)(2) and the dilution ratios on all other modes is higher than this (minimum) dilution ratio by the ratio of the maximum exhaust flow rate to the exhaust flow rate of the corresponding other mode. This is the same dilution ratio requirement for RMC or field transient testing. You must account for this change in dilution ratio in your emission calculations.


(3) Varying dilution-ratio PFD. All the following provisions apply for varying dilution-ratio PFD:


(i) Use a control system with sensors and actuators that can maintain proportional sampling over intervals as short as 200 ms (i.e., 5 Hz control).


(ii) For control input, you may use any sensor output from one or more measurements; for example, intake-air flow, fuel flow, exhaust flow, engine speed, and intake manifold temperature and pressure.


(iii) Account for any emission transit time in the PFD system, as necessary.


(iv) You may use preprogrammed data if they have been determined for the specific test site, duty cycle, and test engine from which you dilute emissions.


(v) We recommend that you run practice cycles to meet the verification criteria in § 1065.545. Note that you must verify every emission test by meeting the verification criteria with the data from that specific test. Data from previously verified practice cycles or other tests may not be used to verify a different emission test.


(vi) You may not use a PFD system that requires preparatory tuning or calibration with a CVS or with the emission results from a CVS. Rather, you must be able to independently calibrate the PFD.


(e) Dilution air temperature, dilution ratio, residence time, and temperature control of PM samples. Dilute PM samples at least once upstream of transfer lines. You may dilute PM samples upstream of a transfer line using full-flow dilution, or partial-flow dilution immediately downstream of a PM probe. In the case of partial-flow dilution, you may have up to 26 cm of insulated length between the end of the probe and the dilution stage, but we recommend that the length be as short as practical. The intent of these specifications is to minimize heat transfer to or from the emission sample before the final stage of dilution, other than the heat you may need to add to prevent aqueous condensation. This is accomplished by initially cooling the sample through dilution. Configure dilution systems as follows:


(1) Set the dilution air temperature to (25 ±5) °C. Use good engineering judgment to select a location to measure this temperature that is as close as practical upstream of the point where dilution air mixes with raw exhaust.


(2) For any PM dilution system (i.e., CVS or PFD), add dilution air to the raw exhaust such that the minimum overall ratio of diluted exhaust to raw exhaust is within the range of (5:1 to 7:1) and is at least 2:1 for any primary dilution stage. Base this minimum value on the maximum engine exhaust flow rate during a given duty cycle for discrete-mode testing and on the maximum engine exhaust flow rate during a given test interval for other testing. Either measure the maximum exhaust flow during a practice run of the test interval or estimate it based on good engineering judgment (for example, you might rely on manufacturer-published literature).


(3) Configure any PM dilution system to have an overall residence time of (1.0 to 5.5) s, as measured from the location of initial dilution air introduction to the location where PM is collected on the sample media. Also configure the system to have a residence time of at least 0.50 s, as measured from the location of final dilution air introduction to the location where PM is collected on the sample media. When determining residence times within sampling system volumes, use an assumed flow temperature of 25 °C and pressure of 101.325 kPa.


(4) Control sample temperature to a (47 ±5) °C tolerance, as measured anywhere within 20 cm upstream or downstream of the PM storage media (such as a filter). Measure this temperature with a bare-wire junction thermocouple with wires that are (0.500 ±0.025) mm diameter, or with another suitable instrument that has equivalent performance.


[79 FR 23754, Apr. 28, 2014, as amended at 81 FR 74162, Oct. 25, 2016; 86 FR 34534, June 29, 2021]


§ 1065.145 Gaseous and PM probes, transfer lines, and sampling system components.

(a) Continuous and batch sampling. Determine the total mass of each constituent with continuous or batch sampling. Both types of sampling systems have probes, transfer lines, and other sampling system components that are described in this section.


(b) Options for engines with multiple exhaust stacks. Measure emissions from a test engine as described in this paragraph (b) if it has multiple exhaust stacks. You may choose to use different measurement procedures for different pollutants under this paragraph (b) for a given test. For purposes of this part 1065, the test engine includes all the devices related to converting the chemical energy in the fuel to the engine’s mechanical output energy. This may or may not involve vehicle- or equipment-based devices. For example, all of an engine’s cylinders are considered to be part of the test engine even if the exhaust is divided into separate exhaust stacks. As another example, all the cylinders of a diesel-electric locomotive are considered to be part of the test engine even if they transmit power through separate output shafts, such as might occur with multiple engine-generator sets working in tandem. Use one of the following procedures to measure emissions with multiple exhaust stacks:


(1) Route the exhaust flow from the multiple stacks into a single flow as described in § 1065.130(c)(6). Sample and measure emissions after the exhaust streams are mixed. Calculate the emissions as a single sample from the entire engine. We recommend this as the preferred option, since it requires only a single measurement and calculation of the exhaust molar flow for the entire engine.


(2) Sample and measure emissions from each stack and calculate emissions separately for each stack. Add the mass (or mass rate) emissions from each stack to calculate the emissions from the entire engine. Testing under this paragraph (b)(2) requires measuring or calculating the exhaust molar flow for each stack separately. If the exhaust molar flow in each stack cannot be calculated from combustion air flow(s), fuel flow(s), and measured gaseous emissions, and it is impractical to measure the exhaust molar flows directly, you may alternatively proportion the engine’s calculated total exhaust molar flow rate (where the flow is calculated using combustion air mass flow(s), fuel mass flow(s), and emissions concentrations) based on exhaust molar flow measurements in each stack using a less accurate, non-traceable method. For example, you may use a total pressure probe and static pressure measurement in each stack.


(3) Sample and measure emissions from one stack and repeat the duty cycle as needed to collect emissions from each stack separately. Calculate the emissions from each stack and add the separate measurements to calculate the mass (or mass rate) emissions from the entire engine. Testing under this paragraph (b)(3) requires measuring or calculating the exhaust molar flow for each stack separately. You may alternatively proportion the engine’s calculated total exhaust molar flow rate based on calculation and measurement limitations as described in paragraph (b)(2) of this section. Use the average of the engine’s total power or work values from the multiple test runs to calculate brake-specific emissions. Divide the total mass (or mass rate) of each emission by the average power (or work). You may alternatively use the engine power or work associated with the corresponding stack during each test run if these values can be determined for each stack separately.


(4) Sample and measure emissions from each stack separately and calculate emissions for the entire engine based on the stack with the highest concentration. Testing under this paragraph (b)(4) requires only a single exhaust flow measurement or calculation for the entire engine. You may determine which stack has the highest concentration by performing multiple test runs, reviewing the results of earlier tests, or using good engineering judgment. Note that the highest concentration of different pollutants may occur in different stacks. Note also that the stack with the highest concentration of a pollutant during a test interval for field testing may be a different stack than the one you identified based on average concentrations over a duty cycle.


(5) Sample emissions from each stack separately and combine the wet sample streams from each stack proportionally to the exhaust molar flows in each stack. Measure the emission concentrations and calculate the emissions for the entire engine based on these weighted concentrations. Testing under this paragraph (b)(5) requires measuring or calculating the exhaust molar flow for each stack separately during the test run to proportion the sample streams from each stack. If it is impractical to measure the exhaust molar flows directly, you may alternatively proportion the wet sample streams based on less accurate, non-traceable flow methods. For example, you may use a total pressure probe and static pressure measurement in each stack. The following restrictions apply for testing under this paragraph (b)(5):


(i) You must use an accurate, traceable measurement or calculation of the engine’s total exhaust molar flow rate for calculating the mass of emissions from the entire engine.


(ii) You may dry the single, combined, proportional sample stream; you may not dry the sample streams from each stack separately.


(iii) You must measure and proportion the sample flows from each stack with active flow controls. For PM sampling, you must measure and proportion the diluted sample flows from each stack with active flow controls that use only smooth walls with no sudden change in cross-sectional area. For example, you may control the dilute exhaust PM sample flows using electrically conductive vinyl tubing and a control device that pinches the tube over a long enough transition length so no flow separation occurs.


(iv) For PM sampling, the transfer lines from each stack must be joined so the angle of the joining flows is 12.5° or less. Note that the exhaust manifold must meet the same specifications as the transfer line according to paragraph (d) of this section.


(6) Sample emissions from each stack separately and combine the wet sample streams from each stack equally. Measure the emission concentrations and calculate the emissions for the entire engine based on these measured concentrations. Testing under this paragraph (b)(6) assumes that the raw-exhaust and sample flows are the same for each stack. The following restrictions apply for testing under this paragraph (b)(6):


(i) You must measure and demonstrate that the sample flow from each stack is within 5% of the value from the stack with the highest sample flow. You may alternatively ensure that the stacks have equal flow rates without measuring sample flows by designing a passive sampling system that meets the following requirements:


(A) The probes and transfer line branches must be symmetrical, have equal lengths and diameters, have the same number of bends, and have no filters.


(B) If probes are designed such that they are sensitive to stack velocity, the stack velocity must be similar at each probe. For example, a static pressure probe used for gaseous sampling is not sensitive to stack velocity.


(C) The stack static pressure must be the same at each probe. You can meet this requirement by placing probes at the end of stacks that are vented to atmosphere.


(D) For PM sampling, the transfer lines from each stack must be joined so the angle of the joining flows is 12.5° or less. Note that the exhaust manifold must meet the same specifications as the transfer line according to paragraph (d) of this section.


(ii) You may use the procedure in this paragraph (b)(6) only if you perform an analysis showing that the resulting error due to imbalanced stack flows and concentrations is either at or below 2%. You may alternatively show that the resulting error does not impact your ability to demonstrate compliance with applicable standards. For example, you may use less accurate, non-traceable measurements of emission concentrations and molar flow in each stack and demonstrate that the imbalances in flows and concentrations cause 2% or less error.


(iii) For a two-stack engine, you may use the procedure in this paragraph (b)(6) only if you can show that the stack with the higher flow has the lower average concentration for each pollutant over the duty cycle.


(iv) You must use an accurate, traceable measurement or calculation of the engine’s total exhaust molar flow rate for calculating the mass of emissions from the entire engine.


(v) You may dry the single, equally combined, sample stream; you may not dry the sample streams from each stack separately.


(vi) You may determine your exhaust flow rates with a chemical balance of exhaust gas concentrations and either intake air flow or fuel flow.


(c) Gaseous and PM sample probes. A probe is the first fitting in a sampling system. It protrudes into a raw or diluted exhaust stream to extract a sample, such that its inside and outside surfaces are in contact with the exhaust. A sample is transported out of a probe into a transfer line, as described in paragraph (d) of this section. The following provisions apply to sample probes:


(1) Probe design and construction. Use sample probes with inside surfaces of 300 series stainless steel or, for raw exhaust sampling, use any nonreactive material capable of withstanding raw exhaust temperatures. Locate sample probes where constituents are mixed to their mean sample concentration. Take into account the mixing of any crankcase emissions that may be routed into the raw exhaust. Locate each probe to minimize interference with the flow to other probes. We recommend that all probes remain free from influences of boundary layers, wakes, and eddies – especially near the outlet of a raw-exhaust stack where unintended dilution might occur. Make sure that purging or back-flushing of a probe does not influence another probe during testing. You may use a single probe to extract a sample of more than one constituent as long as the probe meets all the specifications for each constituent.


(2) Gaseous sample probes. Use either single-port or multi-port probes for sampling gaseous emissions. You may orient these probes in any direction relative to the raw or diluted exhaust flow. For some probes, you must control sample temperatures, as follows:


(i) For probes that extract NOX from diluted exhaust, control the probe’s wall temperature to prevent aqueous condensation.


(ii) For probes that extract hydrocarbons for THC or NMHC analysis from the diluted exhaust of compression-ignition engines, two-stroke spark-ignition engines, or four-stroke spark-ignition engines at or below 19 kW, we recommend heating the probe to minimize hydrocarbon contamination consistent with good engineering judgment. If you routinely fail the contamination check in the 1065.520 pretest check, we recommend heating the probe section to approximately 190 °C to minimize contamination.


(3) PM sample probes. Use PM probes with a single opening at the end. Orient PM probes to face directly upstream. If you shield a PM probe’s opening with a PM pre-classifier such as a hat, you may not use the preclassifier we specify in paragraph (f)(1) of this section. We recommend sizing the inside diameter of PM probes to approximate isokinetic sampling at the expected mean flow rate.


(d) Transfer lines. You may use transfer lines to transport an extracted sample from a probe to an analyzer, storage medium, or dilution system, noting certain restrictions for PM sampling in § 1065.140(e). Minimize the length of all transfer lines by locating analyzers, storage media, and dilution systems as close to probes as practical. We recommend that you minimize the number of bends in transfer lines and that you maximize the radius of any unavoidable bend. Avoid using 90° elbows, tees, and cross-fittings in transfer lines. Where such connections and fittings are necessary, take steps, using good engineering judgment, to ensure that you meet the temperature tolerances in this paragraph (d). This may involve measuring temperature at various locations within transfer lines and fittings. You may use a single transfer line to transport a sample of more than one constituent, as long as the transfer line meets all the specifications for each constituent. The following construction and temperature tolerances apply to transfer lines:


(1) Gaseous samples. Use transfer lines with inside surfaces of 300 series stainless steel, PTFE, Viton
TM, or any other material that you demonstrate has better properties for emission sampling. For raw exhaust sampling, use a non-reactive material capable of withstanding raw exhaust temperatures. You may use in-line filters if they do not react with exhaust constituents and if the filter and its housing meet the same temperature requirements as the transfer lines, as follows:


(i) For NOX transfer lines upstream of either an NO2-to-NO converter that meets the specifications of § 1065.378 or a chiller that meets the specifications of § 1065.376, maintain a sample temperature that prevents aqueous condensation.


(ii) For THC transfer lines for testing compression-ignition engines, two-stroke spark-ignition engines, or four-stroke spark-ignition engines at or below 19 kW, maintain a wall temperature tolerance throughout the entire line of (191 ±11) °C. If you sample from raw exhaust, you may connect an unheated, insulated transfer line directly to a probe. Design the length and insulation of the transfer line to cool the highest expected raw exhaust temperature to no lower than 191 °C, as measured at the transfer line’s outlet. For dilute sampling, you may use a transition zone between the probe and transfer line of up to 92 cm to allow your wall temperature to transition to (191 ±11) °C.


(2) PM samples. We recommend heated transfer lines or a heated enclosure to minimize temperature differences between transfer lines and exhaust constituents. Use transfer lines that are inert with respect to PM and are electrically conductive on the inside surfaces. We recommend using PM transfer lines made of 300 series stainless steel. Electrically ground the inside surface of PM transfer lines.


(e) Optional sample-conditioning components for gaseous sampling. You may use the following sample-conditioning components to prepare gaseous samples for analysis, as long as you do not install or use them in a way that adversely affects your ability to show that your engines comply with all applicable gaseous emission standards.


(1) NO2-to-NO converter. You may use an NO2-to-NO converter that meets the converter conversion verification specified in § 1065.378 at any point upstream of a NOX analyzer, sample bag, or other storage medium.


(2) Sample dryer. You may use either type of sample dryer described in this paragraph (e)(2) to decrease the effects of water on gaseous emission measurements. You may not use a chemical dryer, or use dryers upstream of PM sample filters.


(i) Osmotic-membrane. You may use an osmotic-membrane dryer upstream of any gaseous analyzer or storage medium, as long as it meets the temperature specifications in paragraph (d)(1) of this section. Because osmotic-membrane dryers may deteriorate after prolonged exposure to certain exhaust constituents, consult with the membrane manufacturer regarding your application before incorporating an osmotic-membrane dryer. Monitor the dewpoint, Tdew, and absolute pressure, ptotal, downstream of an osmotic-membrane dryer. You may use continuously recorded values of Tdew and ptotal in the amount of water calculations specified in § 1065.645. For our testing we may use average temperature and pressure values over the test interval or a nominal pressure value that we estimate as the dryer’s average pressure expected during testing as constant values in the amount of water calculations specified in § 1065.645. For your testing, you may use the maximum temperature or minimum pressure values observed during a test interval or duty cycle or the high alarm temperature setpoint or low alarm pressure setpoint as constant values in the calculations specified in § 1065.645. For your testing, you may also use a nominal ptotal, which you may estimate as the dryer’s lowest absolute pressure expected during testing.


(ii) Thermal chiller. You may use a thermal chiller upstream of some gas analyzers and storage media. You may not use a thermal chiller upstream of a THC measurement system for compression-ignition engines, two-stroke spark-ignition engines, or four-stroke spark-ignition engines at or below 19 kW. If you use a thermal chiller upstream of an NO2-to-NO converter or in a sampling system without an NO2-to-NO converter, the chiller must meet the NO2 loss-performance check specified in § 1065.376. Monitor the dewpoint, Tdew, and absolute pressure, p total, downstream of a thermal chiller. You may use continuously recorded values of Tdew and ptotal in the amount of water calculations specified in § 1065.645. If it is valid to assume the degree of saturation in the thermal chiller, you may calculate T dew based on the known chiller performance and continuous monitoring of chiller temperature, Tchiller. If it is valid to assume a constant temperature offset between Tchiller and Tdew, due to a known and fixed amount of sample reheat between the chiller outlet and the temperature measurement location, you may factor in this assumed temperature offset value into emission calculations. If we ask for it, you must show by engineering analysis or by data the validity of any assumptions allowed by this paragraph (e)(2)(ii). For our testing we may use average temperature and pressure values over the test interval or a nominal pressure value that we estimate as the dryer’s average pressure expected during testing as constant values in the calculations specified in § 1065.645. For your testing you may use the maximum temperature and minimum pressure values observed during a test interval or duty cycle or the high alarm temperature setpoint and the low alarm pressure setpoint as constant values in the amount of water calculations specified in § 1065.645. For your testing you may also use a nominal ptotal, which you may estimate as the dryer’s lowest absolute pressure expected during testing.


(3) Sample pumps. You may use sample pumps upstream of an analyzer or storage medium for any gas. Use sample pumps with inside surfaces of 300 series stainless steel, PTFE, or any other material that you demonstrate has better properties for emission sampling. For some sample pumps, you must control temperatures, as follows:


(i) If you use a NOX sample pump upstream of either an NO2-to-NO converter that meets § 1065.378 or a chiller that meets § 1065.376, design the sampling system to prevent aqueous condensation.


(ii) For testing compression-ignition engines, two-stroke spark-ignition engines, or four-stroke spark-ignition engines at or below 19 kW, if you use a THC sample pump upstream of a THC analyzer or storage medium, its inner surfaces must be heated to a tolerance of (191 ±11) °C.


(4) Ammonia Scrubber. You may use ammonia scrubbers for any or all gaseous sampling systems to prevent interference with NH3, poisoning of the NO2-to-NO converter, and deposits in the sampling system or analyzers. Follow the ammonia scrubber manufacturer’s recommendations or use good engineering judgment in applying ammonia scrubbers.


(f) Optional sample-conditioning components for PM sampling. You may use the following sample-conditioning components to prepare PM samples for analysis, as long as you do not install or use them in a way that adversely affects your ability to show that your engines comply with the applicable PM emission standards. You may condition PM samples to minimize positive and negative biases to PM results, as follows:


(1) PM preclassifier. You may use a PM preclassifier to remove large-diameter particles. The PM preclassifier may be either an inertial impactor or a cyclonic separator. It must be constructed of 300 series stainless steel. The preclassifier must be rated to remove at least 50% of PM at an aerodynamic diameter of 10 µm and no more than 1% of PM at an aerodynamic diameter of 1 µm over the range of flow rates for which you use it. Follow the preclassifier manufacturer’s instructions for any periodic servicing that may be necessary to prevent a buildup of PM. Install the preclassifier in the dilution system downstream of the last dilution stage. Configure the preclassifier outlet with a means of bypassing any PM sample media so the preclassifier flow may be stabilized before starting a test. Locate PM sample media within 75 cm downstream of the preclassifier’s exit. You may not use this preclassifier if you use a PM probe that already has a preclassifier. For example, if you use a hat-shaped preclassifier that is located immediately upstream of the probe in such a way that it forces the sample flow to change direction before entering the probe, you may not use any other preclassifier in your PM sampling system.


(2) Other components. You may request to use other PM conditioning components upstream of a PM preclassifier, such as components that condition humidity or remove gaseous-phase hydrocarbons from the diluted exhaust stream. You may use such components only if we approve them under § 1065.10.


[75 FR 23030, Apr. 30, 2010; 79 FR 23756, Apr. 28, 2014; 86 FR 34534, June 29, 2021]


§ 1065.150 Continuous sampling.

You may use continuous sampling techniques for measurements that involve raw or dilute sampling. Make sure continuous sampling systems meet the specifications in § 1065.145. Make sure continuous analyzers meet the specifications in subparts C and D of this part.


§ 1065.170 Batch sampling for gaseous and PM constituents.

Batch sampling involves collecting and storing emissions for later analysis. Examples of batch sampling include collecting and storing gaseous emissions in a bag or collecting and storing PM on a filter. You may use batch sampling to store emissions that have been diluted at least once in some way, such as with CVS, PFD, or BMD. You may use batch sampling to store undiluted emissions. You may stop emission sampling anytime the engine is turned off, consistent with good engineering judgment. This is intended to allow for higher concentrations of dilute exhaust gases and more accurate measurements. Account for exhaust transport delay in the sampling system and integrate over the actual sampling duration when determining ndexh. Use good engineering judgment to add dilution air to fill bags up to minimum read volumes, as needed.


(a) Sampling methods. If you extract from a constant-volume flow rate, sample at a constant-volume flow rate as follows:


(1) Verify proportional sampling after an emission test as described in § 1065.545. You must exclude from the proportional sampling verification any portion of the test where you are not sampling emissions because the engine is turned off and the batch samplers are not sampling, accounting for exhaust transport delay in the sampling system. Use good engineering judgment to select storage media that will not significantly change measured emission levels (either up or down). For example, do not use sample bags for storing emissions if the bags are permeable with respect to emissions or if they off gas emissions to the extent that it affects your ability to demonstrate compliance with the applicable gaseous emission standards in this chapter. As another example, do not use PM filters that irreversibly absorb or adsorb gases to the extent that it affects your ability to demonstrate compliance with the applicable PM emission standard in this chapter.


(2) You must follow the requirements in § 1065.140(e)(2) related to PM dilution ratios. For each filter, if you expect the net PM mass on the filter to exceed 400 µg, assuming a 38 mm diameter filter stain area, you may take the following actions in sequence:


(i) For discrete-mode testing only, you may reduce sample time as needed to target a filter loading of 400 µg, but not below the minimum sample time specified in the standard-setting part.


(ii) Reduce filter face velocity as needed to target a filter loading of 400 µg, down to 50 cm/s or less.


(iii) Increase overall dilution ratio above the values specified in § 1065.140(e)(2) to target a filter loading of 400 µg.


(b) Gaseous sample storage media. Store gas volumes in sufficiently clean containers that minimally off-gas or allow permeation of gases. Use good engineering judgment to determine acceptable thresholds of storage media cleanliness and permeation. To clean a container, you may repeatedly purge and evacuate a container and you may heat it. Use a flexible container (such as a bag) within a temperature-controlled environment, or use a temperature controlled rigid container that is initially evacuated or has a volume that can be displaced, such as a piston and cylinder arrangement. Use containers meeting the specifications in the Table 1 of this section, noting that you may request to use other container materials under § 1065.10. Sample temperatures must stay within the following ranges for each container material:


(1) Up to 40 °C for Tedlar
TM and Kynar
TM..


(2) (191 ±11) °C for Teflon
TM and 300 series stainless steel used with measuring THC or NMHC from compression-ignition engines, two-stroke spark-ignition engines, and four-stroke spark-ignition engines at or below 19 kW. For all other engines and pollutants, these materials may be used for sample temperatures up to 202 °C.


Table 1 of § 1065.170 – Container Materials for Gaseous Batch Sampling

Emissions
Engine type
Compression-ignition

Two-stroke spark-ignition

Four-stroke spark-ignition at or below 19 kW
All other engines
CO, CO2, O2, CH4, C2H6, C3H8, NO, NO2, N2OTedlar
TM, Kynar
TM, Teflon
TM, or 300 series stainless steel
Tedlar
TM, Kynar
TM, Teflon
TM, or 300 series stainless steel.
THC, NMHCTeflon
TM or 300 series stainless steel
Tedlar
TM, Kynar
TM, Teflon
TM, or 300 series stainless steel.

(c) PM sample media. Apply the following methods for sampling particulate emissions:


(1) If you use filter-based sampling media to extract and store PM for measurement, your procedure must meet the following specifications:


(i) If you expect that a filter’s total surface concentration of PM will exceed 400 µg, assuming a 38 mm diameter filter stain area, for a given test interval, you may use filter media with a minimum initial collection efficiency of 98%; otherwise you must use a filter media with a minimum initial collection efficiency of 99.7%. Collection efficiency must be measured as described in ASTM D2986 (incorporated by reference in § 1065.1010), though you may rely on the sample-media manufacturer’s measurements reflected in their product ratings to show that you meet this requirement.


(ii) The filter must be circular, with an overall diameter of 46.50 ±0.6 mm and an exposed diameter of at least 38 mm. See the cassette specifications in paragraph (c)(1)(vii) of this section.


(iii) We highly recommend that you use a pure PTFE filter material that does not have any flow-through support bonded to the back and has an overall thickness of 40 ±20 µm. An inert polymer ring may be bonded to the periphery of the filter material for support and for sealing between the filter cassette parts. We consider Polymethylpentene (PMP) and PTFE inert materials for a support ring, but other inert materials may be used. See the cassette specifications in paragraph (c)(1)(vii) of this section. We allow the use of PTFE-coated glass fiber filter material, as long as this filter media selection does not affect your ability to demonstrate compliance with the applicable standards, which we base on a pure PTFE filter material. Note that we will use pure PTFE filter material for compliance testing, and we may require you to use pure PTFE filter material for any compliance testing we require, such as for selective enforcement audits.


(iv) You may request to use other filter materials or sizes under the provisions of § 1065.10.


(v) To minimize turbulent deposition and to deposit PM evenly on a filter, use a filter holder with a 12.5° (from center) divergent cone angle to transition from the transfer-line inside diameter to the exposed diameter of the filter face. Use 300 series stainless steel for this transition.


(vi) Maintain a filter face velocity near 100 cm/s with less than 5% of the recorded flow values exceeding 100 cm/s, unless you expect the net PM mass on the filter to exceed 400 µg, assuming a 38 mm diameter filter stain area. Measure face velocity as the volumetric flow rate of the sample at the pressure upstream of the filter and temperature of the filter face as measured in § 1065.140(e), divided by the filter’s exposed area. You may use the exhaust stack or CVS tunnel pressure for the upstream pressure if the pressure drop through the PM sampler up to the filter is less than 2 kPa.


(vii) Use a clean cassette designed to the specifications of Figure 1 of § 1065.170. In auto changer configurations, you may use cassettes of similar design. Cassettes must be made of one of the following materials: Delrin
TM, 300 series stainless steel, polycarbonate, acrylonitrile-butadiene-styrene (ABS) resin, or conductive polypropylene. We recommend that you keep filter cassettes clean by periodically washing or wiping them with a compatible solvent applied using a lint-free cloth. Depending upon your cassette material, ethanol (C2H5OH) might be an acceptable solvent. Your cleaning frequency will depend on your engine’s PM and HC emissions.


(viii) If you keep the cassette in the filter holder after sampling, prevent flow through the filter until either the holder or cassette is removed from the PM sampler. If you remove the cassettes from filter holders after sampling, transfer the cassette to an individual container that is covered or sealed to prevent communication of semi-volatile matter from one filter to another. If you remove the filter holder, cap the inlet and outlet. Keep them covered or sealed until they return to the stabilization or weighing environments.


(ix) The filters should not be handled outside of the PM stabilization and weighing environments and should be loaded into cassettes, filter holders, or auto changer apparatus before removal from these environments.


(2) You may use other PM sample media that we approve under § 1065.10, including non-filtering techniques. For example, you might deposit PM on an inert substrate that collects PM using electrostatic, thermophoresis, inertia, diffusion, or some other deposition mechanism, as approved.



[70 FR 40516, July 13, 2005, as amended at 73 FR 37298, June 30, 2008; 73 FR 59321, Oct. 8, 2008; 76 FR 57440, Sept. 15, 2011;79 FR 23757, Apr. 28, 2014; 81 FR 74162, Oct. 25, 2016; 86 FR 34534, June 29, 2021]


§ 1065.190 PM-stabilization and weighing environments for gravimetric analysis.

(a) This section describes the two environments required to stabilize and weigh PM for gravimetric analysis: the PM stabilization environment, where filters are stored before weighing; and the weighing environment, where the balance is located. The two environments may share a common space. These volumes may be one or more rooms, or they may be much smaller, such as a glove box or an automated weighing system consisting of one or more countertop-sized environments.


(b) We recommend that you keep both the stabilization and the weighing environments free of ambient contaminants, such as dust, aerosols, or semi-volatile material that could contaminate PM samples. We recommend that these environments conform with an “as-built” Class Six clean room specification according to ISO 14644-1 (incorporated by reference in § 1065.1010); however, we also recommend that you deviate from ISO 14644-1 as necessary to minimize air motion that might affect weighing. We recommend maximum air-supply and air-return velocities of 0.05 m/s in the weighing environment.


(c) Verify the cleanliness of the PM-stabilization environment using reference filters, as described in § 1065.390(d).


(d) Maintain the following ambient conditions within the two environments during all stabilization and weighing:


(1) Ambient temperature and tolerances. Maintain the weighing environment at a tolerance of (22 ±1) °C. If the two environments share a common space, maintain both environments at a tolerance of (22 ±1) °C. If they are separate, maintain the stabilization environment at a tolerance of (22 ±3) °C.


(2) Dewpoint. Maintain a dewpoint of 9.5 °C in both environments. This dewpoint will control the amount of water associated with sulfuric acid (H2SO4) PM, such that 1.2216 grams of water will be associated with each gram of H2SO4.


(3) Dewpoint tolerances. If the expected fraction of sulfuric acid in PM is unknown, we recommend controlling dewpoint at within ±1 °C tolerance. This would limit any dewpoint-related change in PM to less than ±2%, even for PM that is 50% sulfuric acid. If you know your expected fraction of sulfuric acid in PM, we recommend that you select an appropriate dewpoint tolerance for showing compliance with emission standards using the following table as a guide:


Table 1 of § 1065.190 – Dewpoint Tolerance as a Function of % PM Change and % Sulfuric Acid PM

Expected sulfuric acid fraction of PM
±0.5% PM mass change
±1% PM mass change
±2% PM mass change
5%±3 °C±6 °C±12 °C
50%±0.3 °C±0.6 °C±1.2 °C
100%±0.15 °C±0.3 °C±0.6 °C

(e) Verify the following ambient conditions using measurement instruments that meet the specifications in subpart C of this part:


(1) Continuously measure dewpoint and ambient temperature. Use these values to determine if the stabilization and weighing environments have remained within the tolerances specified in paragraph (d) of this section for at least 60 min. before weighing sample media (e.g., filters). We recommend that you use an interlock that automatically prevents the balance from reporting values if either of the environments have not been within the applicable tolerances for the past 60 min.


(2) Continuously measure atmospheric pressure within the weighing environment. An acceptable alternative is to use a barometer that measures atmospheric pressure outside the weighing environment, as long as you can ensure that atmospheric pressure at the balance is always within ±100 Pa of that outside environment during weighing operations. Record atmospheric pressure as you weigh filters, and use these pressure values to perform the buoyancy correction in § 1065.690.


(f) We recommend that you install a balance as follows:


(1) Install the balance on a vibration-isolation platform to isolate it from external noise and vibration.


(2) Shield the balance from convective airflow with a static-dissipating draft shield that is electrically grounded.


(3) Follow the balance manufacturer’s specifications for all preventive maintenance.


(4) Operate the balance manually or as part of an automated weighing system.


(g) Minimize static electric charge in the balance environment, as follows:


(1) Electrically ground the balance.


(2) Use 300 series stainless steel tweezers if PM sample media (e.g., filters) must be handled manually.


(3) Ground tweezers with a grounding strap, or provide a grounding strap for the operator such that the grounding strap shares a common ground with the balance. Make sure grounding straps have an appropriate resistor to protect operators from accidental shock.


(4) Provide a static-electricity neutralizer that is electrically grounded in common with the balance to remove static charge from PM sample media (e.g., filters), as follows:


(i) You may use radioactive neutralizers such as a Polonium (
210Po) source. Replace radioactive sources at the intervals recommended by the neutralizer manufacturer.


(ii) You may use other neutralizers, such as corona-discharge ionizers. If you use a corona-discharge ionizer, we recommend that you monitor it for neutral net charge according to the ionizer manufacturer’s recommendations.


(5) We recommend that you use a device to monitor the static charge of PM sample media (e.g., filter) surface.


(6) We recommend that you neutralize PM sample media (e.g., filters) to within ±2.0 V of neutral. Measure static voltages as follows:


(i) Measure static voltage of PM sample media (e.g., filters) according to the electrostatic voltmeter manufacturer’s instructions.


(ii) Measure static voltage of PM sample media (e.g., filters) while the media is at least 15 cm away from any grounded surfaces to avoid mirror image charge interference.


[70 FR 40516, July 13, 2005, as amended at 73 FR 37299, June 30, 2008; 73 FR 59323, Oct. 8, 2008; 76 FR 57440, Sept. 15, 2011]


§ 1065.195 PM-stabilization environment for in-situ analyzers.

(a) This section describes the environment required to determine PM in-situ. For in-situ analyzers, such as an inertial balance, this is the environment within a PM sampling system that surrounds the PM sample media (e.g., filters). This is typically a very small volume.


(b) Maintain the environment free of ambient contaminants, such as dust, aerosols, or semi-volatile material that could contaminate PM samples. Filter all air used for stabilization with HEPA filters. Ensure that HEPA filters are installed properly so that background PM does not leak past the HEPA filters.


(c) Maintain the following thermodynamic conditions within the environment before measuring PM:


(1) Ambient temperature. Select a nominal ambient temperature, Tamb, between (42 and 52) °C. Maintain the ambient temperature within ±1.0 °C of the selected nominal value.


(2) Dewpoint. Select a dewpoint, Tdew, that corresponds to Tamb such that Tdew = (0.95Tamb−11.40) °C. The resulting dewpoint will control the amount of water associated with sulfuric acid (H2SO4) PM, such that 1.1368 grams of water will be associated with each gram of H2SO4. For example, if you select a nominal ambient temperature of 47 °C, set a dewpoint of 33.3 °C.


(3) Dewpoint tolerance. If the expected fraction of sulfuric acid in PM is unknown, we recommend controlling dewpoint within ±1.0 °C. This would limit any dewpoint-related change in PM to less than ±2%, even for PM that is 50% sulfuric acid. If you know your expected fraction of sulfuric acid in PM, we recommend that you select an appropriate dewpoint tolerance for showing compliance with emission standards using Table 1 of § 1065.190 as a guide:


(4) Absolute pressure. Use good engineering judgment to maintain a tolerance of absolute pressure if your PM measurement instrument requires it.


(d) Continuously measure dewpoint, temperature, and pressure using measurement instruments that meet the PM-stabilization environment specifications in subpart C of this part. Use these values to determine if the in-situ stabilization environment is within the tolerances specified in paragraph (c) of this section. Do not use any PM quantities that are recorded when any of these parameters exceed the applicable tolerances.


(e) If you use an inertial PM balance, we recommend that you install it as follows:


(1) Isolate the balance from any external noise and vibration that is within a frequency range that could affect the balance.


(2) Follow the balance manufacturer’s specifications.


(f) If static electricity affects an inertial balance, you may use a static neutralizer, as follows:


(1) You may use a radioactive neutralizer such as a Polonium (
210Po) source or a Krypton (
85Kr) source. Replace radioactive sources at the intervals recommended by the neutralizer manufacturer.


(2) You may use other neutralizers, such as a corona-discharge ionizer. If you use a corona-discharge ionizer, we recommend that you monitor it for neutral net charge according to the ionizer manufacturer’s recommendations.


[70 FR 40516, July 13, 2005, as amended at 73 FR 32799, June 30, 2008]


Subpart C – Measurement Instruments

§ 1065.201 Overview and general provisions.

(a) Scope. This subpart specifies measurement instruments and associated system requirements related to emission testing in a laboratory or similar environment and in the field. This includes laboratory instruments and portable emission measurement systems (PEMS) for measuring engine parameters, ambient conditions, flow-related parameters, and emission concentrations.


(b) Instrument types. You may use any of the specified instruments as described in this subpart to perform emission tests. If you want to use one of these instruments in a way that is not specified in this subpart, or if you want to use a different instrument, you must first get us to approve your alternate procedure under § 1065.10. Where we specify more than one instrument for a particular measurement, we may identify which instrument serves as the reference for comparing with an alternate procedure. You may generally use instruments with compensation algorithms that are functions of other gaseous measurements and the known or assumed fuel properties for the test fuel. The target value for any compensation algorithm is 0% (that is, no bias high and no bias low), regardless of the uncompensated signal’s bias.


(c) Measurement systems. Assemble a system of measurement instruments that allows you to show that your engines comply with the applicable emission standards, using good engineering judgment. When selecting instruments, consider how conditions such as vibration, temperature, pressure, humidity, viscosity, specific heat, and exhaust composition (including trace concentrations) may affect instrument compatibility and performance.


(d) Redundant systems. For all measurement instruments described in this subpart, you may use data from multiple instruments to calculate test results for a single test. If you use redundant systems, use good engineering judgment to use multiple measured values in calculations or to disregard individual measurements. Note that you must keep your results from all measurements. This requirement applies whether or not you actually use the measurements in your calculations.


(e) Range. You may use an instrument’s response above 100% of its operating range if this does not affect your ability to show that your engines comply with the applicable emission standards. Note that we require additional testing and reporting if an analyzer responds above 100% of its range. Auto-ranging analyzers do not require additional testing or reporting.


(f) Related subparts for laboratory testing. Subpart D of this part describes how to evaluate the performance of the measurement instruments in this subpart. In general, if an instrument is specified in a specific section of this subpart, its calibration and verifications are typically specified in a similarly numbered section in subpart D of this part. For example, § 1065.290 gives instrument specifications for PM balances and § 1065.390 describes the corresponding calibrations and verifications. Note that some instruments also have other requirements in other sections of subpart D of this part. Subpart B of this part identifies specifications for other types of equipment, and subpart H of this part specifies engine fluids and analytical gases.


(g) Field testing and testing with PEMS. Subpart J of this part describes how to use these and other measurement instruments for field testing and other PEMS testing.


(h) Recommended practices. This subpart identifies a variety of recommended but not required practices for proper measurements. We believe in most cases it is necessary to follow these recommended practices for accurate and repeatable measurements. However, we do not specifically require you to follow these recommended practices to perform a valid test, as long as you meet the required calibrations and verifications of measurement systems specified in subpart D of this part. Similarly, we are not required to follow all recommended practices, as long as we meet the required calibrations and verifications. Our decision to follow or not follow a given recommendation when we perform a test does not depend on whether you followed it during your testing.


[70 FR 40516, July 13, 2005, as amended at 73 FR 37299, June 30, 2008; 75 FR 23033, Apr. 30, 2010; 79 FR 23758, Apr. 29, 2014]


§ 1065.202 Data updating, recording, and control.

Your test system must be able to update data, record data and control systems related to operator demand, the dynamometer, sampling equipment, and measurement instruments. Set up the measurement and recording equipment to avoid aliasing by ensuring that the sampling frequency is at least double that of the signal you are measuring, consistent with good engineering judgment; this may require increasing the sampling rate or filtering the signal. Use data acquisition and control systems that can record at the specified minimum frequencies, as follows:


Table 1 of § 1065.202 – Data Recording and Control Minimum Frequencies

Applicable test protocol section
Measured values
Minimum

command and control

frequency
a
Minimum

recording

frequency
b
c
§ 1065.510Speed and torque during an engine step-map1 Hz1 mean value per step.
§ 1065.510Speed and torque during an engine sweep-map5 Hz1 Hz means.
§ 1065.514; § 1065.530Transient duty cycle reference and feedback speeds and torques5 Hz1 Hz means.
§ 1065.514; § 1065.530Steady-state and ramped-modal duty cycle reference and feedback speeds and torques1 Hz1 Hz.
§ 1065.520; § 1065.530; § 1065.550Continuous concentrations of raw or dilute analyzers1 Hz.
§ 1065.520; § 1065.530 § 1065.550Batch concentrations of raw or dilute analyzers1 mean value per test interval.
§ 1065.530; § 1065.545Diluted exhaust flow rate from a CVS with a heat exchanger upstream of the flow measurement1 Hz.
§ 1065.530; § 1065.545Diluted exhaust flow rate from a CVS without a heat exchanger upstream of the flow measurement5 Hz1 Hz means.
§ 1065.530; § 1065.545Intake-air or raw-exhaust flow rate1 Hz means.
§ 1065.530; § 1065.545Dilution air flow if actively controlled (for example, a partial-flow PM sampling system)
d
5 Hz1 Hz means.
§ 1065.530; § 1065.545Sample flow from a CVS that has a heat exchanger1 Hz1 Hz.
§ 1065.530; § 1065.545Sample flow from a CVS that does not have a heat exchanger5 Hz1 Hz means.


a The specifications for minimum command and control frequency do not apply for CFVs that are not using active control.


b 1 Hz means are data reported from the instrument at a higher frequency, but recorded as a series of 1 s mean values at a rate of 1 Hz.


c For CFVs in a CVS, the minimum recording frequency is 1 Hz. The minimum recording frequency does not apply for CFVs used to control sampling from a CVS utilizing CFVs.


d Dilution air flow specifications do not apply for CVS dilution air.


[79 FR 23759, Apr. 28, 2014, as amended at 81 FR 74162, Oct. 25, 2016]


§ 1065.205 Performance specifications for measurement instruments.

Your test system as a whole must meet all the calibrations, verifications, and test-validation criteria specified elsewhere in this part for laboratory testing or field testing, as applicable. We recommend that your instruments meet the specifications in this section for all ranges you use for testing. We also recommend that you keep any documentation you receive from instrument manufacturers showing that your instruments meet the specifications in the following table:



[86 FR 34534, June 29, 2021]


Measurement of Engine Parameters and Ambient Conditions

§ 1065.210 Work input and output sensors.

(a) Application. Use instruments as specified in this section to measure work inputs and outputs during engine operation. We recommend that you use sensors, transducers, and meters that meet the specifications in Table 1 of § 1065.205. Note that your overall systems for measuring work inputs and outputs must meet the linearity verifications in § 1065.307. We recommend that you measure work inputs and outputs where they cross the system boundary as shown in Figure 1 of § 1065.210. The system boundary is different for air-cooled engines than for liquid-cooled engines. If you choose to measure work before or after a work conversion, relative to the system boundary, use good engineering judgment to estimate any work-conversion losses in a way that avoids overestimation of total work. For example, if it is impractical to instrument the shaft of an exhaust turbine generating electrical work, you may decide to measure its converted electrical work. As another example, you may decide to measure the tractive (i.e., electrical output) power of a locomotive, rather than the brake power of the locomotive engine. In these cases, divide the electrical work by accurate values of electrical generator efficiency (η

(b) Shaft work. Use speed and torque transducer outputs to calculate total work according to § 1065.650.


(1) Speed. Use a magnetic or optical shaft-position detector with a resolution of at least 60 counts per revolution, in combination with a frequency counter that rejects common-mode noise.


(2) Torque. You may use a variety of methods to determine engine torque. As needed, and based on good engineering judgment, compensate for torque induced by the inertia of accelerating and decelerating components connected to the flywheel, such as the drive shaft and dynamometer rotor. Use any of the following methods to determine engine torque:


(i) Measure torque by mounting a strain gage or similar instrument in-line between the engine and dynamometer.


(ii) Measure torque by mounting a strain gage or similar instrument on a lever arm connected to the dynamometer housing.


(iii) Calculate torque from internal dynamometer signals, such as armature current, as long as you calibrate this measurement as described in § 1065.310.


(c) Electrical work. Use a watt-hour meter output to calculate total work according to § 1065.650. Use a watt-hour meter that outputs active power. Watt-hour meters typically combine a Wheatstone bridge voltmeter and a Hall-effect clamp-on ammeter into a single microprocessor-based instrument that analyzes and outputs several parameters, such as alternating or direct current voltage, current, power factor, apparent power, reactive power, and active power.


(d) Pump, compressor or turbine work. Use pressure transducer and flow-meter outputs to calculate total work according to § 1065.650. For flow meters, see §§ 1065.220 through 1065.248.


[70 FR 40516, July 13, 2005, as amended at 73 FR 37300, June 30, 2008; 79 FR 23760, Apr. 28, 2014]


§ 1065.215 Pressure transducers, temperature sensors, and dewpoint sensors.

(a) Application. Use instruments as specified in this section to measure pressure, temperature, and dewpoint.


(b) Component requirements. We recommend that you use pressure transducers, temperature sensors, and dewpoint sensors that meet the specifications in Table 1 of § 1065.205. Note that your overall systems for measuring pressure, temperature, and dewpoint must meet the calibration and verifications in § 1065.315.


(c) Temperature. For PM-balance environments or other precision temperature measurements over a narrow temperature range, we recommend thermistors. For other applications we recommend thermocouples that are not grounded to the thermocouple sheath. You may use other temperature sensors, such as resistive temperature detectors (RTDs).


(d) Pressure. Pressure transducers must be located in a temperature-controlled environment, or they must compensate for temperature changes over their expected operating range. Transducer materials must be compatible with the fluid being measured. For atmospheric pressure or other precision pressure measurements, we recommend either capacitance-type, quartz crystal, or laser-interferometer transducers. For other applications, we recommend either strain gage or capacitance-type pressure transducers. You may use other pressure-measurement instruments, such as manometers, where appropriate.


(e) Dewpoint. For PM-stabilization environments, we recommend chilled-surface hygrometers, which include chilled mirror detectors and chilled surface acoustic wave (SAW) detectors. For other applications, we recommend thin-film capacitance sensors. You may use other dewpoint sensors, such as a wet-bulb/dry-bulb psychrometer, where appropriate.


[70 FR 40516, July 13, 2005, as amended at 73 FR 37300, June 30, 2008]


Flow-Related Measurements

§ 1065.220 Fuel flow meter.

(a) Application. You may use fuel flow meters in combination with a chemical balance of fuel, DEF, intake air, and raw exhaust to calculate raw exhaust flow as described in § 1065.655(f). You may also use fuel flow meters to determine the mass flow rate of carbon-carrying fuel streams for performing carbon balance error verification in § 1065.543 and to calculate the mass of those fuel streams as described in § 1065.643. The following provisions apply for using fuel flow meters:


(1) Use the actual value of calculated raw exhaust flow rate in the following cases:


(i) For multiplying raw exhaust flow rate with continuously sampled concentrations.


(ii) For multiplying total raw exhaust flow with batch-sampled concentrations.


(iii) For calculating the dilution air flow for background correction as described in § 1065.667.


(2) In the following cases, you may use a fuel flow meter signal that does not give the actual value of raw exhaust, as long as it is linearly proportional to the exhaust molar flow rate’s actual calculated value:


(i) For feedback control of a proportional sampling system, such as a partial-flow dilution system.


(ii) For multiplying with continuously sampled gas concentrations, if the same signal is used in a chemical-balance calculation to determine work from brake-specific fuel consumption and fuel consumed.


(b) Component requirements. We recommend that you use a fuel flow meter that meets the specifications in Table 1 of § 1065.205. We recommend a fuel flow meter that measures mass directly, such as one that relies on gravimetric or inertial measurement principles. This may involve using a meter with one or more scales for weighing fuel or using a Coriolis meter. Note that your overall system for measuring fuel flow must meet the linearity verification in § 1065.307 and the calibration and verifications in § 1065.320.


(c) Recirculating fuel. In any fuel-flow measurement, account for any fuel that bypasses the engine or returns from the engine to the fuel storage tank.


(d) Flow conditioning. For any type of fuel flow meter, condition the flow as needed to prevent wakes, eddies, circulating flows, or flow pulsations from affecting the accuracy or repeatability of the meter. You may accomplish this by using a sufficient length of straight tubing (such as a length equal to at least 10 pipe diameters) or by using specially designed tubing bends, straightening fins, or pneumatic pulsation dampeners to establish a steady and predictable velocity profile upstream of the meter. Condition the flow as needed to prevent any gas bubbles in the fuel from affecting the fuel meter.


[70 FR 40516, July 13, 2005, as amended at 73 FR 37300, June 30, 2008; 76 FR 57441, Sept. 15, 2011; 81 FR 74162, Oct. 25, 2016; 86 FR 34536, June 29, 2021]


§ 1065.225 Intake-air flow meter.

(a) Application. You may use intake-air flow meters in combination with a chemical balance of fuel, DEF, intake air, and raw exhaust to calculate raw exhaust flow as described in § 1065.655(f) and (g). You may also use intake-air flow meters to determine the amount of intake air input for performing carbon balance error verification in § 1065.543 and to calculate the measured amount of intake air, nint, as described in § 1065.643. The following provisions apply for using intake air flow meters:


(i) For multiplying raw exhaust flow rate with continuously sampled concentrations.


(ii) For multiplying total raw exhaust flow with batch-sampled concentrations.


(iii) For verifying minimum dilution ratio for PM batch sampling as described in § 1065.546.


(iv) For calculating the dilution air flow for background correction as described in § 1065.667.


(2) In the following cases, you may use an intake-air flow meter signal that does not give the actual value of raw exhaust, as long as it is linearly proportional to the exhaust flow rate’s actual calculated value:


(i) For feedback control of a proportional sampling system, such as a partial-flow dilution system.


(ii) For multiplying with continuously sampled gas concentrations, if the same signal is used in a chemical-balance calculation to determine work from brake-specific fuel consumption and fuel consumed.


(b) Component requirements. We recommend that you use an intake-air flow meter that meets the specifications in Table 1 of § 1065.205. This may include a laminar flow element, an ultrasonic flow meter, a subsonic venturi, a thermal-mass meter, an averaging Pitot tube, or a hot-wire anemometer. Note that your overall system for measuring intake-air flow must meet the linearity verification in § 1065.307 and the calibration in § 1065.325.


(c) Flow conditioning. For any type of intake-air flow meter, condition the flow as needed to prevent wakes, eddies, circulating flows, or flow pulsations from affecting the accuracy or repeatability of the meter. You may accomplish this by using a sufficient length of straight tubing (such as a length equal to at least 10 pipe diameters) or by using specially designed tubing bends, orifice plates or straightening fins to establish a predictable velocity profile upstream of the meter.


[70 FR 40516, July 13, 2005, as amended at 76 FR 57442, Sept. 15, 2011;79 FR 23760, Apr. 28, 2014; 81 FR 74163, Oct. 25, 2016; 86 FR 34536, June 29, 2021]


§ 1065.230 Raw exhaust flow meter.

(a) Application. You may use measured raw exhaust flow, as follows:


(1) Use the actual value of calculated raw exhaust in the following cases:


(i) Multiply raw exhaust flow rate with continuously sampled concentrations.


(ii) Multiply total raw exhaust with batch sampled concentrations.


(2) In the following cases, you may use a raw exhaust flow meter signal that does not give the actual value of raw exhaust, as long as it is linearly proportional to the exhaust flow rate’s actual calculated value:


(i) For feedback control of a proportional sampling system, such as a partial-flow dilution system.


(ii) For multiplying with continuously sampled gas concentrations, if the same signal is used in a chemical-balance calculation to determine work from brake-specific fuel consumption and fuel consumed.


(b) Component requirements. We recommend that you use a raw-exhaust flow meter that meets the specifications in Table 1 of § 1065.205. This may involve using an ultrasonic flow meter, a subsonic venturi, an averaging Pitot tube, a hot-wire anemometer, or other measurement principle. This would generally not involve a laminar flow element or a thermal-mass meter. Note that your overall system for measuring raw exhaust flow must meet the linearity verification in § 1065.307 and the calibration and verifications in § 1065.330. Any raw-exhaust meter must be designed to appropriately compensate for changes in the raw exhaust’s thermodynamic, fluid, and compositional states.


(c) Flow conditioning. For any type of raw exhaust flow meter, condition the flow as needed to prevent wakes, eddies, circulating flows, or flow pulsations from affecting the accuracy or repeatability of the meter. You may accomplish this by using a sufficient length of straight tubing (such as a length equal to at least 10 pipe diameters) or by using specially designed tubing bends, orifice plates or straightening fins to establish a predictable velocity profile upstream of the meter.


(d) Exhaust cooling. You may cool raw exhaust upstream of a raw-exhaust flow meter, as long as you observe all the following provisions:


(1) Do not sample PM downstream of the cooling.


(2) If cooling causes exhaust temperatures above 202 °C to decrease to below 180 °C, do not sample NMHC downstream of the cooling for compression-ignition engines, two-stroke spark-ignition engines, or four-stroke spark-ignition engines at or below 19 kW.


(3) The cooling must not cause aqueous condensation.


[70 FR 40516, July 13, 2005, as amended at 79 FR 23761, Apr. 28, 2014]


§ 1065.240 Dilution air and diluted exhaust flow meters.

(a) Application. Use a diluted exhaust flow meter to determine instantaneous diluted exhaust flow rates or total diluted exhaust flow over a test interval. You may use the difference between a diluted exhaust flow meter and a dilution air meter to calculate raw exhaust flow rates or total raw exhaust flow over a test interval.


(b) Component requirements. We recommend that you use a diluted exhaust flow meter that meets the specifications in Table 1 of § 1065.205. Note that your overall system for measuring diluted exhaust flow must meet the linearity verification in § 1065.307 and the calibration and verifications in § 1065.340 and § 1065.341. You may use the following meters:


(1) For constant-volume sampling (CVS) of the total flow of diluted exhaust, you may use a critical-flow venturi (CFV) or multiple critical-flow venturis arranged in parallel, a positive-displacement pump (PDP), a subsonic venturi (SSV), or an ultrasonic flow meter (UFM). Combined with an upstream heat exchanger, either a CFV or a PDP will also function as a passive flow controller in a CVS system. However, you may also combine any flow meter with any active flow control system to maintain proportional sampling of exhaust constituents. You may control the total flow of diluted exhaust, or one or more sample flows, or a combination of these flow controls to maintain proportional sampling.


(2) For any other dilution system, you may use a laminar flow element, an ultrasonic flow meter, a subsonic venturi, a critical-flow venturi or multiple critical-flow venturis arranged in parallel, a positive-displacement meter, a thermal-mass meter, an averaging Pitot tube, or a hot-wire anemometer.


(c) Flow conditioning. For any type of diluted exhaust flow meter, condition the flow as needed to prevent wakes, eddies, circulating flows, or flow pulsations from affecting the accuracy or repeatability of the meter. For some meters, you may accomplish this by using a sufficient length of straight tubing (such as a length equal to at least 10 pipe diameters) or by using specially designed tubing bends, orifice plates or straightening fins to establish a predictable velocity profile upstream of the meter.


(d) Exhaust cooling. You may cool diluted exhaust upstream of a dilute-exhaust flow meter, as long as you observe all the following provisions:


(1) Do not sample PM downstream of the cooling.


(2) If cooling causes exhaust temperatures above 202 °C to decrease to below 180 °C, do not sample NMHC downstream of the cooling for compression-ignition engines, two-stroke spark-ignition engines, or four-stroke spark-ignition engines at or below 19 kW.


(3) The cooling must not cause aqueous condensation as described in § 1065.140(c)(6).


[70 FR 40516, July 13, 2005, as amended at 75 FR 23035, Apr. 30, 2010; 79 FR 23761, Apr. 28, 2014]


§ 1065.245 Sample flow meter for batch sampling.

(a) Application. Use a sample flow meter to determine sample flow rates or total flow sampled into a batch sampling system over a test interval. You may use the difference between a diluted exhaust sample flow meter and a dilution air meter to calculate raw exhaust flow rates or total raw exhaust flow over a test interval.


(b) Component requirements. We recommend that you use a sample flow meter that meets the specifications in Table 1 of § 1065.205. This may involve a laminar flow element, an ultrasonic flow meter, a subsonic venturi, a critical-flow venturi or multiple critical-flow venturis arranged in parallel, a positive-displacement meter, a thermal-mass meter, an averaging Pitot tube, or a hot-wire anemometer. Note that your overall system for measuring sample flow must meet the linearity verification in § 1065.307. For the special case where CFVs are used for both the diluted exhaust and sample-flow measurements and their upstream pressures and temperatures remain similar during testing, you do not have to quantify the flow rate of the sample-flow CFV. In this special case, the sample-flow CFV inherently flow-weights the batch sample relative to the diluted exhaust CFV.


(c) Flow conditioning. For any type of sample flow meter, condition the flow as needed to prevent wakes, eddies, circulating flows, or flow pulsations from affecting the accuracy or repeatability of the meter. For some meters, you may accomplish this by using a sufficient length of straight tubing (such as a length equal to at least 10 pipe diameters) or by using specially designed tubing bends, orifice plates or straightening fins to establish a predictable velocity profile upstream of the meter.


§ 1065.247 Diesel exhaust fluid flow rate.

(a) Application. Determine diesel exhaust fluid (DEF) flow rate over a test interval for batch or continuous emission sampling using one of the three methods described in this section.


(b) ECM. Use the ECM signal directly to determine DEF flow rate. You may combine this with a gravimetric scale if that improves measurement quality. Prior to testing, you may characterize the ECM signal using a laboratory measurement and adjust the ECM signal, consistent with good engineering judgment.


(c) Flow meter. Measure DEF flow rate with a flow meter. We recommend that the flow meter that meets the specifications in Table 1 of § 1065.205. Note that your overall system for measuring DEF flow must meet the linearity verification in § 1065.307. Measure using the following procedure:


(1) Condition the flow of DEF as needed to prevent wakes, eddies, circulating flows, or flow pulsations from affecting the accuracy or repeatability of the meter. You may accomplish this by using a sufficient length of straight tubing (such as a length equal to at least 10 pipe diameters) or by using specially designed tubing bends, straightening fins, or pneumatic pulsation dampeners to establish a steady and predictable velocity profile upstream of the meter. Condition the flow as needed to prevent any gas bubbles in the fluid from affecting the flow meter.


(2) Account for any fluid that bypasses the DEF dosing unit or returns from the dosing unit to the fluid storage tank.


(d) Gravimetric scale. Use a gravimetric scale to determine the mass of DEF the engine uses over a discrete-mode test interval and divide by the time of the test interval.


[86 FR 34536, June 29, 2021]


§ 1065.248 Gas divider.

(a) Application. You may use a gas divider to blend calibration gases.


(b) Component requirements. Use a gas divider that blends gases to the specifications of § 1065.750 and to the flow-weighted concentrations expected during testing. You may use critical-flow gas dividers, capillary-tube gas dividers, or thermal-mass-meter gas dividers. Note that your overall gas-divider system must meet the linearity verification in § 1065.307.


CO and CO2 Measurements

§ 1065.250 Nondispersive infrared analyzer.

(a) Application. Use a nondispersive infrared (NDIR) analyzer to measure CO and CO2 concentrations in raw or diluted exhaust for either batch or continuous sampling.


(b) Component requirements. We recommend that you use an NDIR analyzer that meets the specifications in Table 1 of § 1065.205. Note that your NDIR-based system must meet the calibration and verifications in §§ 1065.350 and 1065.355 and it must also meet the linearity verification in § 1065.307.


[76 FR 57442, Sept. 15, 2011, as amended at 79 FR 23761, Apr. 28, 2014]


Hydrocarbon Measurements

§ 1065.260 Flame-ionization detector.

(a) Application. Use a flame-ionization detector (FID) analyzer to measure hydrocarbon concentrations in raw or diluted exhaust for either batch or continuous sampling. Determine hydrocarbon concentrations on a carbon number basis of one, C1. For measuring THC or THCE you must use a FID analyzer. For measuring CH4 you must meet the requirements of paragraph (f) of this section. See subpart I of this part for special provisions that apply to measuring hydrocarbons when testing with oxygenated fuels.


(b) Component requirements. We recommend that you use a FID analyzer that meets the specifications in Table 1 of § 1065.205. Note that your FID-based system for measuring THC, THCE, or CH4 must meet all the verifications for hydrocarbon measurement in subpart D of this part, and it must also meet the linearity verification in § 1065.307.


(c) Heated FID analyzers. For measuring THC or THCE from compression-ignition engines, two-stroke spark-ignition engines, and four-stroke spark-ignition engines at or below 19 kW, you must use heated FID analyzers that maintain all surfaces that are exposed to emissions at a temperature of (191 ±11) °C.


(d) FID fuel and burner air. Use FID fuel and burner air that meet the specifications of § 1065.750. Do not allow the FID fuel and burner air to mix before entering the FID analyzer to ensure that the FID analyzer operates with a diffusion flame and not a premixed flame.


(e) NMHC and NMOG. For demonstrating compliance with NMHC standards, you may either measure THC and determine NMHC mass as described in § 1065.660(b)(1), or you may measure THC and CH4 and determine NMHC as described in § 1065.660(b)(2) or (3). You may also use the additive method in § 1065.660(b)(4) for natural gas-fueled engines as described in § 1065.266. See 40 CFR 1066.635 for methods to demonstrate compliance with NMOG standards for vehicle testing.


(f) NMNEHC. For demonstrating compliance with NMNEHC standards, you may either measure NMHC or determine NMNEHC mass as described in § 1065.660(c)(1), you may measure THC, CH4, and C2H6 and determine NMNEHC as described in § 1065.660(c)(2), or you may use the additive method in § 1065.660(c)(3).


(g) CH4. For reporting CH4 or for demonstrating compliance with CH4 standards, you may use a FID analyzer with a nonmethane cutter as described in § 1065.265 or you may use a GC-FID as described in § 1065.267. Determine CH4 as described in § 1065.660(d).


[76 FR 57442, Sept. 15, 2011, as amended at 79 FR 23761, Apr. 28, 2014; 81 FR 74163, Oct. 25, 2016; 86 FR 34536, June 29, 2021]


§ 1065.265 Nonmethane cutter.

(a) Application. You may use a nonmethane cutter to measure CH4 with a FID analyzer. A nonmethane cutter oxidizes all nonmethane hydrocarbons to CO2 and H2O. You may use a nonmethane cutter for raw or diluted exhaust for batch or continuous sampling.


(b) System performance. Determine nonmethane-cutter performance as described in § 1065.365 and use the results to calculate CH4 or NMHC emissions in § 1065.660.


(c) Configuration. Configure the nonmethane cutter with a bypass line if it is needed for the verification described in § 1065.365.


(d) Optimization. You may optimize a nonmethane cutter to maximize the penetration of CH4 and the oxidation of all other hydrocarbons. You may humidify a sample and you may dilute a sample with purified air or oxygen (O2) upstream of the nonmethane cutter to optimize its performance. You must account for any sample humidification and dilution in emission calculations.


[70 FR 40516, July 13, 2005, as amended at 73 FR 37300, June 30, 2008; 76 FR 57442, Sept. 15, 2011]


§ 1065.266 Fourier transform infrared analyzer.

(a) Application. For engines that run only on natural gas, you may use a Fourier transform infrared (FTIR) analyzer to measure nonmethane hydrocarbon (NMHC) and nonmethane-nonethane hydrocarbon (NMNEHC) for continuous sampling. You may use an FTIR analyzer with any gaseous-fueled engine, including dual-fuel and flexible-fuel engines, to measure CH4 and C2H6, for either batch or continuous sampling (for subtraction from THC).


(b) Component requirements. We recommend that you use an FTIR analyzer that meets the specifications in Table 1 of § 1065.205. Note that your FTIR-based system must meet the linearity verification in § 1065.307. Use appropriate analytical procedures for interpretation of infrared spectra. For example, EPA Test Method 320 (see https://www.epa.gov/emc/method-320-vapor-phase-organic-and-inorganic-emissions-extractive-ftir) and ASTM D6348 (incorporated by reference in § 1065.1010) are considered valid methods for spectral interpretation. You must use heated FTIR analyzers that maintain all surfaces that are exposed to emissions at a temperature of (110 to 202) °C.


(c) Hydrocarbon species for NMHC and NMNEHC additive determination. To determine NMNEHC, measure ethene, ethyne, propane, propene, butane, formaldehyde, acetaldehyde, formic acid, and methanol. To determine NMHC, measure ethane in addition to those same hydrocarbon species. Determine NMHC and NMNEHC as described in § 1065.660(b)(4) and § 1065.660(c)(3).


(d) NMHC and NMNEHC CH4 and C2H6 determination from subtraction of CH4 and C2H6 from THC. Determine CH4 as described in § 1065.660(d)(2) and C2H6 as described § 1065.660(e). Determine NMHC from subtraction of CH4 from THC as described in § 1065.660(b)(3) and NMNEHC from subtraction of CH4 and C2H6 as described § 1065.660(c)(2). Determine CH4 as described in § 1065.660(d)(2) and C2H6 as described § 1065.660(e).


(e) Interference verification. Perform interference verification for FTIR analyzers using the procedures of § 1065.366. Certain interference gases can interfere with FTIR analyzers by causing a response similar to the hydrocarbon species of interest. When running the interference verification for these analyzers, use interference gases as follows:


(1) The interference gases for CH4 are CO2, H2O, and C2H6.


(2) The interference gases for C2H6 are CO2, H2O, and CH4.


(3) The interference gases for other measured hydrocarbon species are CO2, H2O, CH4, and C2H6.


[81 FR 74163, Oct. 25, 2016, as amended at 86 FR 34536, June 29, 2021]


§ 1065.267 Gas chromatograph with a flame ionization detector.

(a) Application. You may use a gas chromatograph with a flame ionization detector (GC-FID) to measure CH4 and C2H6 concentrations of diluted exhaust for batch sampling. While you may also use a nonmethane cutter to measure CH4, as described in § 1065.265, use a reference procedure based on a gas chromatograph for comparison with any proposed alternate measurement procedure under § 1065.10.


(b) Component requirements. We recommend that you use a GC-FID that meets the specifications in Table 1 of § 1065.205 and that the measurement be done according to SAE J1151 (incorporated by reference in § 1065.1010). The GC-FID must meet the linearity verification in § 1065.307.


[76 FR 57442, Sept. 15, 2011, as amended at 79 FR 23761, Apr. 28, 2014; 81 FR 74163, Oct. 25, 2016]


§ 1065.269 Photoacoustic analyzer for ethanol and methanol.

(a) Application. You may use a photoacoustic analyzer to measure ethanol and/or methanol concentrations in diluted exhaust for batch sampling.


(b) Component requirements. We recommend that you use a photoacoustic analyzer that meets the specifications in Table 1 of § 1065.205. Note that your photoacoustic system must meet the verification in § 1065.369 and it must also meet the linearity verification in § 1065.307. Use an optical wheel configuration that gives analytical priority to measurement of the least stable components in the sample. Select a sample integration time of at least 5 seconds. Take into account sample chamber and sample line volumes when determining flush times for your instrument.


[79 FR 23761, Apr. 28, 2014]


NOX and N2O Measurements

§ 1065.270 Chemiluminescent detector.

(a) Application. You may use a chemiluminescent detector (CLD) to measure NOX concentration in raw or diluted exhaust for batch or continuous sampling. We generally accept a CLD for NOX measurement, even though it measures only NO and NO2, when coupled with an NO2-to-NO converter, since conventional engines and aftertreatment systems do not emit significant amounts of NOX species other than NO and NO2. Measure other NOX species if required by the standard-setting part. While you may also use other instruments to measure NOX, as described in § 1065.272, use a reference procedure based on a chemiluminescent detector for comparison with any proposed alternate measurement procedure under § 1065.10.


(b) Component requirements. We recommend that you use a CLD that meets the specifications in Table 1 of § 1065.205. Note that your CLD-based system must meet the quench verification in § 1065.370 and it must also meet the linearity verification in § 1065.307. You may use a heated or unheated CLD, and you may use a CLD that operates at atmospheric pressure or under a vacuum.


(c) NO2-to-NO converter. Place upstream of the CLD an internal or external NO2-to-NO converter that meets the verification in § 1065.378. Configure the converter with a bypass line if it is needed to facilitate this verification.


(d) Humidity effects. You must maintain all CLD temperatures to prevent aqueous condensation. If you remove humidity from a sample upstream of a CLD, use one of the following configurations:


(1) Connect a CLD downstream of any dryer or chiller that is downstream of an NO2-to-NO converter that meets the verification in § 1065.378.


(2) Connect a CLD downstream of any dryer or thermal chiller that meets the verification in § 1065.376.


(e) Response time. You may use a heated CLD to improve CLD response time.


[70 FR 40516, July 13, 2005, as amended at 73 FR 37300, June 30, 2008; 76 FR 57442, Sept. 15, 2011; 79 FR 23761, Apr. 28, 2014]


§ 1065.272 Nondispersive ultraviolet analyzer.

(a) Application. You may use a nondispersive ultraviolet (NDUV) analyzer to measure NOX concentration in raw or diluted exhaust for batch or continuous sampling. We generally accept an NDUV for NOX measurement, even though it measures only NO and NO2, since conventional engines and aftertreatment systems do not emit significant amounts of other NOX species. Measure other NOX species if required by the standard-setting part. Note that good engineering judgment may preclude you from using an NDUV analyzer if sampled exhaust from test engines contains oil (or other contaminants) in sufficiently high concentrations to interfere with proper operation.


(b) Component requirements. We recommend that you use an NDUV analyzer that meets the specifications in Table 1 of § 1065.205. Note that your NDUV-based system must meet the verifications in § 1065.372 and it must also meet the linearity verification in § 1065.307.


(c) NO2-to-NO converter. If your NDUV analyzer measures only NO, place upstream of the NDUV analyzer an internal or external NO2-to-NO converter that meets the verification in § 1065.378. Configure the converter with a bypass to facilitate this verification.


(d) Humidity effects. You must maintain NDUV temperature to prevent aqueous condensation, unless you use one of the following configurations:


(1) Connect an NDUV downstream of any dryer or chiller that is downstream of an NO2-to-NO converter that meets the verification in § 1065.378.


(2) Connect an NDUV downstream of any dryer or thermal chiller that meets the verification in § 1065.376.


[70 FR 40516, July 13, 2005, as amended at 73 FR 59323, Oct. 8, 2008; 76 FR 57442, Sept. 15, 2011; 79 FR 23761, Apr. 28, 2014]


§ 1065.275 N2O measurement devices.

(a) General component requirements. We recommend that you use an analyzer that meets the specifications in Table 1 of § 1065.205. Note that your system must meet the linearity verification in § 1065.307.


(b) Instrument types. You may use any of the following analyzers to measure N2O:


(1) Nondispersive infrared (NDIR) analyzer.


(2) Fourier transform infrared (FTIR) analyzer. Use appropriate analytical procedures for interpretation of infrared spectra. For example, EPA Test Method 320 (see § 1065.266(b)) and ASTM D6348 (incorporated by reference in § 1065.1010) are considered valid methods for spectral interpretation.


(3) Laser infrared analyzer. Examples of laser infrared analyzers are pulsed-mode high-resolution narrow band mid-infrared analyzers, and modulated continuous wave high-resolution narrow band mid-infrared analyzers.


(4) Photoacoustic analyzer. Use an optical wheel configuration that gives analytical priority to measurement of the least stable components in the sample. Select a sample integration time of at least 5 seconds. Take into account sample chamber and sample line volumes when determining flush times for your instrument.


(5) Gas chromatograph analyzer. You may use a gas chromatograph with an electron-capture detector (GC-ECD) to measure N2O concentrations of diluted exhaust for batch sampling.


(i) You may use a packed or porous layer open tubular (PLOT) column phase of suitable polarity and length to achieve adequate resolution of the N2O peak for analysis. Examples of acceptable columns are a PLOT column consisting of bonded polystyrene-divinylbenzene or a Porapack Q packed column. Take the column temperature profile and carrier gas selection into consideration when setting up your method to achieve adequate N2O peak resolution.


(ii) Use good engineering judgment to zero your instrument and correct for drift. You do not need to follow the specific procedures in §§ 1065.530 and 1065.550(b) that would otherwise apply. For example, you may perform a span gas measurement before and after sample analysis without zeroing and use the average area counts of the pre-span and post-span measurements to generate a response factor (area counts/span gas concentration), which you then multiply by the area counts from your sample to generate the sample concentration.


(c) Interference verification. Perform interference verification for NDIR, FTIR, laser infrared analyzers, and photoacoustic analyzers using the procedures of § 1065.375. Interference verification is not required for GC-ECD. Certain interference gases can positively interfere with NDIR, FTIR, and photoacoustic analyzers by causing a response similar to N2O. When running the interference verification for these analyzers, use interference gases as follows:


(1) The interference gases for NDIR analyzers are CO, CO2, H2O, CH4, and SO2. Note that interference species, with the exception of H2O, are dependent on the N2O infrared absorption band chosen by the instrument manufacturer. For each analyzer determine the N2O infrared absorption band. For each N2O infrared absorption band, use good engineering judgment to determine which interference gases to use in the verification.


(2) Use good engineering judgment to determine interference gases for FTIR, and laser infrared analyzers. Note that interference species, with the exception of H2O, are dependent on the N2O infrared absorption band chosen by the instrument manufacturer. For each analyzer determine the N2O infrared absorption band. For each N2O infrared absorption band, use good engineering judgment to determine interference gases to use in the verification.


(3) The interference gases for photoacoustic analyzers are CO, CO2, and H2O.


[74 FR 56512, Oct. 30, 2009, as amended at 76 FR 57443, Sept. 15, 2011; 78 FR 36398, June 17, 2013;79 FR 23761, Apr. 28, 2014; 81 FR 74163, Oct. 25, 2016; 86 FR 34536, June 29, 2021]


O2 Measurements

§ 1065.280 Paramagnetic and magnetopneumatic O2 detection analyzers.

(a) Application. You may use a paramagnetic detection (PMD) or magnetopneumatic detection (MPD) analyzer to measure O2 concentration in raw or diluted exhaust for batch or continuous sampling. You may use good engineering judgment to develop calculations that use O2 measurements with a chemical balance of fuel, DEF, intake air, and exhaust to calculate exhaust flow rate.


(b) Component requirements. We recommend that you use a PMD or MPD analyzer that meets the specifications in Table 1 of § 1065.205. Note that it must meet the linearity verification in § 1065.307.


[73 FR 37300, June 30, 2008, as amended at 76 FR 57443, Sept. 15, 2011;79 FR 23762, Apr. 28, 2014; 86 FR 34536, June 29, 2021]


Air-to-Fuel Ratio Measurements

§ 1065.284 Zirconia (ZrO2) analyzer.

(a) Application. You may use a zirconia (ZrO2) analyzer to measure air-to-fuel ratio in raw exhaust for continuous sampling. You may use O2 measurements with intake air or fuel flow measurements to calculate exhaust flow rate according to § 1065.650.


(b) Component requirements. We recommend that you use a ZrO2 analyzer that meets the specifications in Table 1 of § 1065.205. Note that your ZrO2-based system must meet the linearity verification in § 1065.307.


[70 FR 40516, July 13, 2005, as amended at 76 FR 57443, Sept. 15, 2011; 79 FR 23762, Apr. 28, 2014]


PM Measurements

§ 1065.290 PM gravimetric balance.

(a) Application. Use a balance to weigh net PM on a sample medium for laboratory testing.


(b) Component requirements. We recommend that you use a balance that meets the specifications in Table 1 of § 1065.205. Note that your balance-based system must meet the linearity verification in § 1065.307. If the balance uses internal calibration weights for routine spanning and the weights do not meet the specifications in § 1065.790, the weights must be verified independently with external calibration weights meeting the requirements of § 1065.790. While you may also use an inertial balance to measure PM, as described in § 1065.295, use a reference procedure based on a gravimetric balance for comparison with any proposed alternate measurement procedure under § 1065.10.


(c) Pan design. We recommend that you use a balance pan designed to minimize corner loading of the balance, as follows:


(1) Use a pan that centers the PM sample media (such as a filter) on the weighing pan. For example, use a pan in the shape of a cross that has upswept tips that center the PM sample media on the pan.


(2) Use a pan that positions the PM sample as low as possible.


(d) Balance configuration. Configure the balance for optimum settling time and stability at your location.


[73 FR 37300, June 30, 2008, as amended at 75 FR 68462, Nov. 8, 2010]


§ 1065.295 PM inertial balance for field-testing analysis.

(a) Application. You may use an inertial balance to quantify net PM on a sample medium for field testing.


(b) Component requirements. We recommend that you use a balance that meets the specifications in Table 1 of § 1065.205. Note that your balance-based system must meet the linearity verification in § 1065.307. If the balance uses an internal calibration process for routine spanning and linearity verifications, the process must be NIST-traceable.


(c) Loss correction. You may use PM loss corrections to account for PM loss in the inertial balance, including the sample handling system.


(d) Deposition. You may use electrostatic deposition to collect PM as long as its collection efficiency is at least 95%.


[73 FR 59259, Oct. 8, 2008, as amended at 75 FR 68462, Nov. 8, 2010; 76 FR 57443, Sept. 15, 2011; 79 FR 23762, Apr. 28, 2014]


Subpart D – Calibrations and Verifications

§ 1065.301 Overview and general provisions.

(a) This subpart describes required and recommended calibrations and verifications of measurement systems. See subpart C of this part for specifications that apply to individual instruments.


(b) You must generally use complete measurement systems when performing calibrations or verifications in this subpart. For example, this would generally involve evaluating instruments based on values recorded with the complete system you use for recording test data, including analog-to-digital converters. For some calibrations and verifications, we may specify that you disconnect part of the measurement system to introduce a simulated signal.


(c) If we do not specify a calibration or verification for a portion of a measurement system, calibrate that portion of your system and verify its performance at a frequency consistent with any recommendations from the measurement-system manufacturer, consistent with good engineering judgment.


(d) Use NIST-traceable standards to the tolerances we specify for calibrations and verifications. Where we specify the need to use NIST-traceable standards, you may alternatively ask for our approval to use international standards that are not NIST-traceable.


§ 1065.303 Summary of required calibration and verifications.

The following table summarizes the required and recommended calibrations and verifications described in this subpart and indicates when these have to be performed:


Table 1 of § 1065.303 – Summary of Required Calibration and Verifications

Type of calibration or verification
Minimum frequency a
§ 1065.305: Accuracy, repeatability and noiseAccuracy: Not required, but recommended for initial installation. Repeatability: Not required, but recommended for initial installation.
Noise: Not required, but recommended for initial installation.
§ 1065.307: Linearity verification
Speed: Upon initial installation, within 370 days before testing and after major maintenance.
Torque: Upon initial installation, within 370 days before testing and after major maintenance.
Electrical power, current, and voltage: Upon initial installation, within 370 days before testing and after major maintenance.b
Fuel mass flow rate: Upon initial installation, within 370 days before testing, and after major maintenance.
Fuel mass scale: Upon initial installation, within 370 days before testing, and after major maintenance.
DEF mass flow rate: Upon initial installation, within 370 days before testing, and after major maintenance.c
DEF mass scale: Upon initial installation, within 370 days before testing, and after major maintenance.
Intake-air, dilution air, diluted exhaust, and batch sampler flow rates: Upon initial installation, within 370 days before testing and after major maintenance.d
Raw exhaust flow rate: Upon initial installation, within 185 days before testing and after major maintenance.d
Gas dividers: Upon initial installation, within 370 days before testing, and after major maintenance.
Gas analyzers (unless otherwise noted): Upon initial installation, within 35 days before testing and after major maintenance.
FTIR and photoacoustic analyzers: Upon initial installation, within 370 days before testing and after major maintenance.
GC-ECD: Upon initial installation and after major maintenance.
PM balance: Upon initial installation, within 370 days before testing and after major maintenance.
Pressure, temperature, and dewpoint: Upon initial installation, within 370 days before testing and after major maintenance.
§ 1065.308: Continuous gas analyzer system response and updating-recording verification – for gas analyzers not continuously compensated for other gas speciesUpon initial installation or after system modification that would affect response.
§ 1065.309: Continuous gas analyzer system-response and updating-recording verification – for gas analyzers continuously compensated for other gas speciesUpon initial installation or after system modification that would affect response.
§ 1065.310: TorqueUpon initial installation and after major maintenance.
§ 1065.315: Pressure, temperature, dewpointUpon initial installation and after major maintenance.
§ 1065.320: Fuel flowUpon initial installation and after major maintenance.
§ 1065.325: Intake flowUpon initial installation and after major maintenance.
§ 1065.330: Exhaust flowUpon initial installation and after major maintenance.
§ 1065.340: Diluted exhaust flow (CVS)Upon initial installation and after major maintenance.
§ 1065.341: CVS and PFD flow verification (propane check)Upon initial installation, within 35 days before testing, and after major maintenance.e
§ 1065.342 Sample dryer verificationFor thermal chillers: Upon installation and after major maintenance. For osmotic membranes; upon installation, within 35 days of testing, and after major maintenance.
§ 1065.345: Vacuum leakFor laboratory testing: Upon initial installation of the sampling system, within 8 hours before the start of the first test interval of each duty-cycle sequence, and after maintenance such as pre-filter changes.
For field testing: After each installation of the sampling system on the vehicle, prior to the start of the field test, and after maintenance such as pre-filter changes.
§ 1065.350: CO2 NDIR H2O interferenceUpon initial installation and after major maintenance.
§ 1065.355: CO NDIR CO2 and H2O interferenceUpon initial installation and after major maintenance.
§ 1065.360: FID calibration THC FID optimization, and THC FID verificationCalibrate all FID analyzers: upon initial installation and after major maintenance.
Optimize and determine CH4 response for THC FID analyzers: upon initial installation and after major maintenance.
Verify CH4 response for THC FID analyzers: upon initial installation, within 185 days before testing, and after major maintenance.
Verify C2H6 response for THC FID analyzers if used for NMNEHC determination: upon initial installation, within 185 days before testing, and after major maintenance.
§ 1065.362: Raw exhaust FID O2 interferenceFor all FID analyzers: upon initial installation, and after major maintenance.
For THC FID analyzers: upon initial installation, after major maintenance, and after FID optimization according to § 1065.360.
§ 1065.365: Nonmethane cutter penetrationUpon initial installation, within 185 days before testing, and after major maintenance.
§ 1065.366: Interference verification for FTIR analyzersUpon initial installation and after major maintenance.
§ 1065.369: H2O, CO, and CO2 interference verification for ethanol photoacoustic analyzersUpon initial installation and after major maintenance.
§ 1065.370: CLD CO2 and H2O quenchUpon initial installation and after major maintenance.
§ 1065.372: NDUV HC and H2O interferenceUpon initial installation and after major maintenance.
§ 1065.375: N2O analyzer interferenceUpon initial installation and after major maintenance.
§ 1065.376: Chiller NO2 penetrationUpon initial installation and after major maintenance.
§ 1065.378: NO2-to-NO converter conversionUpon initial installation, within 35 days before testing, and after major maintenance.
§ 1065.390: PM balance and weighingIndependent verification: Upon initial installation, within 370 days before testing, and after major maintenance.
Zero, span, and reference sample verifications: Within 12 hours of weighing, and after major maintenance.
§ 1065.395: Inertial PM balance and weighingIndependent verification: Upon initial installation, within 370 days before testing, and after major maintenance.
Other verifications: Upon initial installation and after major maintenance.

a Perform calibrations and verifications more frequently than we specify, according to measurement system manufacturer instructions and good engineering judgment.

b Perform linearity verification either for electrical power or for current and voltage.

c Linearity verification is not required if DEF flow rate comes directly from the ECM signal as described in § 1065.247(b).

d Linearity verification is not required if the flow signal’s accuracy is verified by carbon balance error verification as described in § 1065.307(e)(5) or a propane check as described in § 1065.341.

e CVS and PFD flow verification (propane check) is not required for measurement systems verified by linearity verification as described in § 1065.307 or carbon balance error verification as described in § 1065.341(h).


[86 FR 34536, June 29, 2021]


§ 1065.305 Verifications for accuracy, repeatability, and noise.

(a) This section describes how to determine the accuracy, repeatability, and noise of an instrument. Table 1 of § 1065.205 specifies recommended values for individual instruments.


(b) We do not require you to verify instrument accuracy, repeatability, or noise.


However, it may be useful to consider these verifications to define a specification for a new instrument, to verify the performance of a new instrument upon delivery, or to troubleshoot an existing instrument.


(c) In this section we use the letter “y” to denote a generic measured quantity, the superscript over-bar to denote an arithmetic mean (such as y
), and the subscript “ref” to denote the reference quantity being measured.


(d) Conduct these verifications as follows:


(1) Prepare an instrument so it operates at its specified temperatures, pressures, and flows. Perform any instrument linearization or calibration procedures prescribed by the instrument manufacturer.


(2) Zero the instrument as you would before an emission test by introducing a zero signal. Depending on the instrument, this may be a zero-concentration gas, a reference signal, a set of reference thermodynamic conditions, or some combination of these. For gas analyzers, use a zero gas that meets the specifications of § 1065.750.


(3) Span the instrument as you would before an emission test by introducing a span signal. Depending on the instrument, this may be a span-concentration gas, a reference signal, a set of reference thermodynamic conditions, or some combination of these. For gas analyzers, use a span gas that meets the specifications of § 1065.750.


(4) Use the instrument to quantify a NIST-traceable reference quantity, yref. For gas analyzers the reference gas must meet the specifications of § 1065.750. Select a reference quantity near the mean value expected during testing. For all gas analyzers, use a quantity near the flow-weighted mean concentration expected at the standard or expected during testing, whichever is greater. For noise verification, use the same zero gas from paragraph (d)(2) of this section as the reference quantity. In all cases, allow time for the instrument to stabilize while it measures the reference quantity. Stabilization time may include time to purge an instrument and time to account for its response.


(5) Sample and record values for 30 seconds (you may select a longer sampling period if the recording update frequency is less than 0.5 Hz), record the arithmetic mean, y
i and record the standard deviation, σi of the recorded values. Refer to § 1065.602 for an example of calculating arithmetic mean and standard deviation.


(6) Also, if the reference quantity is not absolutely constant, which might be the case with a reference flow, sample and record values of yrefi for 30 seconds and record the arithmetic mean of the values, y
ref. Refer to § 1065.602 for an example of calculating arithmetic mean.


(7) Subtract the reference value, yref (or y
refi), from the arithmetic mean, y
i. Record this value as the error, εi.


(8) Repeat the steps specified in paragraphs (d)(2) through (7) of this section until you have ten arithmetic means (y
1, y
2, y
i, …y
10), ten standard deviations, (σ1, σ2, σi,…σ10), and ten errors (ε1, ε2, εi,…ε10).


(9) Use the following values to quantify your measurements:


(i) Accuracy. Instrument accuracy is the absolute difference between the reference quantity, yref (or y
ref), and the arithmetic mean of the ten y
i, y
values. Refer to the example of an accuracy calculation in § 1065.602. We recommend that instrument accuracy be within the specifications in Table 1 of § 1065.205.


(ii) Repeatability. Repeatability is two times the standard deviation of the ten errors (that is, repeatability = 2 · sε). Refer to the example of a standard-deviation calculation in § 1065.602. We recommend that instrument repeatability be within the specifications in Table 1 of § 1065.205.


(iii) Noise. Noise is two times the root-mean-square of the ten standard deviations (that is, noise = 2 · rmsσ) when the reference signal is a zero-quantity signal. Refer to the example of a root-mean-square calculation in § 1065.602. We recommend that instrument noise be within the specifications in Table 1 of § 1065.205.


(10) You may use a measurement instrument that does not meet the accuracy, repeatability, or noise specifications in Table 1 of § 1065.205, as long as you meet the following criteria:


(i) Your measurement systems meet all the other required calibration, verification, and validation specifications that apply as specified in the regulations.


(ii) The measurement deficiency does not adversely affect your ability to demonstrate compliance with the applicable standards.


[70 FR 40516, July 13, 2005, as amended at 73 FR 37301, June 30, 2008; 75 FR 23037, Apr. 30, 2010; 79 FR 23763, Apr. 28, 2014]


§ 1065.307 Linearity verification.

(a) Scope and frequency. Perform linearity verification on each measurement system listed in Table 1 of this section at least as frequently as indicated in Table 1 of § 1065.303, consistent with measurement system manufacturer’s recommendations and good engineering judgment. The intent of linearity verification is to determine that a measurement system responds accurately and proportionally over the measurement range of interest. Linearity verification generally consists of introducing a series of at least 10 reference values to a measurement system. The measurement system quantifies each reference value. The measured values are then collectively compared to the reference values by using a least-squares linear regression and the linearity criteria specified in Table 1 of this section.


(b) Performance requirements. If a measurement system does not meet the applicable linearity criteria referenced in Table 1 of this section, correct the deficiency by re-calibrating, servicing, or replacing components as needed. Repeat the linearity verification after correcting the deficiency to ensure that the measurement system meets the linearity criteria. Before you may use a measurement system that does not meet linearity criteria, you must demonstrate to us that the deficiency does not adversely affect your ability to demonstrate compliance with the applicable standards.


(c) Procedure. Use the following linearity verification protocol, or use good engineering judgment to develop a different protocol that satisfies the intent of this section, as described in paragraph (a) of this section:


(1) In this paragraph (c), the letter “y” denotes a generic measured quantity, the superscript over-bar denotes an arithmetic mean (such as y
), and the subscript “ref” denotes the known or reference quantity being measured.


(2) Use good engineering judgment to operate a measurement system at normal operating conditions. This may include any specified adjustment or periodic calibration of the measurement system.


(3) If applicable, zero the instrument as you would before an emission test by introducing a zero signal. Depending on the instrument, this may be a zero-concentration gas, a reference signal, a set of reference thermodynamic conditions, or some combination of these. For gas analyzers, use a zero gas that meets the specifications of § 1065.750 and introduce it directly at the analyzer port.


(4) If applicable, span the instrument as you would before an emission test by introducing a span signal. Depending on the instrument, this may be a span-concentration gas, a reference signal, a set of reference thermodynamic conditions, or some combination of these. For gas analyzers, use a span gas that meets the specifications of § 1065.750 and introduce it directly at the analyzer port.


(5) If applicable, after spanning the instrument, check zero with the same signal you used in paragraph (c)(3) of this section. Based on the zero reading, use good engineering judgment to determine whether or not to rezero and or re-span the instrument before continuing.


(6) For all measured quantities, use the instrument manufacturer’s recommendations and good engineering judgment to select reference values, yrefi, that cover a range of values that you expect would prevent extrapolation beyond these values during emission testing. We recommend selecting a zero reference signal as one of the reference values for the linearity verification. For pressure, temperature, dewpoint, power, current, voltage, photoacoustic analyzers, and GC-ECD linearity verifications, we recommend at least three reference values. For all other linearity verifications select at least ten reference values.


(7) Use the instrument manufacturer’s recommendations and good engineering judgment to select the order in which you will introduce the series of reference values. For example, you may select the reference values randomly to avoid correlation with previous measurements and to avoid hysteresis; you may select reference values in ascending or descending order to avoid long settling times of reference signals; or you may select values to ascend and then descend to incorporate the effects of any instrument hysteresis into the linearity verification.


(8) Generate reference quantities as described in paragraph (d) of this section. For gas analyzers, use gas concentrations known to be within the specifications of § 1065.750 and introduce them directly at the analyzer port.


(9) Introduce a reference signal to the measurement instrument.


(10) Allow time for the instrument to stabilize while it measures the value at the reference condition. Stabilization time may include time to purge an instrument and time to account for its response.


(11) At a recording frequency of at least f Hz, specified in Table 1 of § 1065.205, measure the value at the reference condition for 30 seconds (you may select a longer sampling period if the recording update frequency is less than 0.5 Hz) and record the arithmetic mean of the recorded values, y
i. Refer to § 1065.602 for an example of calculating an arithmetic mean.


(12) Repeat the steps in paragraphs (c)(9) though (11) of this section until measurements are complete at each of the reference conditions.


(13) Use the arithmetic means, Y
i, and reference values, yrefi, to calculate least-squares linear regression parameters and statistical values to compare to the minimum performance criteria specified in Table 1 of this section. Use the calculations for a floating intercept described in § 1065.602. Using good engineering judgment, you may weight the results of individual data pairs (i.e., (yrefi, y
i)), in the linear regression calculations.


(d) Reference signals. This paragraph (d) describes recommended methods for generating reference values for the linearity-verification protocol in paragraph (c) of this section. Use reference values that simulate actual values, or introduce an actual value and measure it with a reference-measurement system. In the latter case, the reference value is the value reported by the reference-measurement system. Reference values and reference-measurement systems must be NIST-traceable. We recommend using calibration reference quantities that are NIST-traceable within 0.5% uncertainty, if not specified elsewhere in this part 1065. Use the following recommended methods to generate reference values or use good engineering judgment to select a different reference:


(1) Speed. Run the engine or dynamometer at a series of steady-state speeds and use a strobe, photo tachometer, or laser tachometer to record reference speeds.


(2) Torque. Use a series of calibration weights and a calibration lever arm to simulate engine torque. You may instead use the engine or dynamometer itself to generate a nominal torque that is measured by a reference load cell or proving ring in series with the torque-measurement system. In this case, use the reference load cell measurement as the reference value. Refer to § 1065.310 for a torque-calibration procedure similar to the linearity verification in this section.


(3) Electrical power, current, and voltage. You must perform linearity verification for either electrical power meters, or for current and voltage meters. Perform linearity verifications using a reference meter and controlled sources of current and voltage. We recommend using a complete calibration system that is suitable for the electrical power distribution industry.


(4) Fuel and DEF mass flow rate. Use a gravimetric reference measurement (such as a scale, balance, or mass comparator) and a container. Use a stopwatch or timer to measure the time intervals over which reference masses of fluid pass through the mass flow rate meter. Use good engineering judgment to correct the reference mass flowing through the mass flow rate meter for buoyancy effects from any tubes, temperature probes, or objects submerged in the fluid in the container that are not attached to the container. If the container has any tubes or wires connected to the container, recalibrate the gravimetric reference measurement device with them connected and at normal operating pressure using calibration weights that meet the requirements in § 1065.790. The corrected reference mass that flowed through the mass flow rate meter during a time interval divided by the duration of the time interval is the average reference mass flow rate. For meters that report a different quantity (such as actual volume, standard volume, or moles), convert the reported quantity to mass. For meters that report a cumulative quantity calculate the average measured mass flow rate as the difference in the reported cumulative mass during the time interval divided by the duration of the time interval. For measuring flow rate of gaseous fuel prevent condensation on the fuel container and any attached tubes, fittings, or regulators.


(5) Flow rates – inlet air, dilution air, diluted exhaust, raw exhaust, or sample flow. Use a reference flow meter with a blower or pump to simulate flow rates. Use a restrictor, diverter valve, a variable-speed blower or a variable-speed pump to control the range of flow rates. Use the reference meter’s response as the reference values.


(i) Reference flow meters. Because the flow range requirements for these various flows are large, we allow a variety of reference meters. For example, for diluted exhaust flow for a full-flow dilution system, we recommend a reference subsonic venturi flow meter with a restrictor valve and a blower to simulate flow rates. For inlet air, dilution air, diluted exhaust for partial-flow dilution, raw exhaust, or sample flow, we allow reference meters such as critical flow orifices, critical flow venturis, laminar flow elements, master mass flow standards, or Roots meters. Make sure the reference meter is calibrated and its calibration is NIST-traceable. If you use the difference of two flow measurements to determine a net flow rate, you may use one of the measurements as a reference for the other.


(ii) Reference flow values. Because the reference flow is not absolutely constant, sample and record values of n
refi for 30 seconds and use the arithmetic mean of the values, n
ref, as the reference value. Refer to § 1065.602 for an example of calculating arithmetic mean.


(6) Gas division. Use one of the two reference signals:


(i) At the outlet of the gas-division system, connect a gas analyzer that meets the linearity verification described in this section and has not been linearized with the gas divider being verified. For example, verify the linearity of an analyzer using a series of reference analytical gases directly from compressed gas cylinders that meet the specifications of § 1065.750. We recommend using a FID analyzer or a PMD or MPD O2 analyzer because of their inherent linearity. Operate this analyzer consistent with how you would operate it during an emission test. Connect a span gas containing only a single constituent of interest with balance of purified air or purified N2 to the gas-divider inlet. Use the gas-division system to divide the span gas with purified air or nitrogen. Select gas divisions that you typically use. Use a selected gas division as the measured value. Use the analyzer response divided by the span gas concentration as the reference gas-division value. Because the instrument response is not absolutely constant, sample and record values of xrefi for 30 seconds and use the arithmetic mean of the values, x
ref, as the reference value. Refer to § 1065.602 for an example of calculating arithmetic mean.


(ii) Using good engineering judgment and the gas divider manufacturer’s recommendations, use one or more reference flow meters to measure the flow rates of the gas divider and verify the gas-division value.


(7) Continuous constituent concentration. For reference values, use a series of gas cylinders of known gas concentration containing only a single constituent of interest with balance of purified air or purified N2 or use a gas-division system that is known to be linear with a span gas. Gas cylinders, gas-division systems, and span gases that you use for reference values must meet the specifications of § 1065.750.


(8) Temperature. You may perform the linearity verification for temperature measurement systems with thermocouples, RTDs, and thermistors by removing the sensor from the system and using a simulator in its place. Use a NIST-traceable simulator that is independently calibrated and, as appropriate, cold-junction-compensated. The simulator uncertainty scaled to absolute temperature must be less than 0.5% of Tmax. If you use this option, you must use sensors that the supplier states are accurate to better than 0.5% of Tmax compared with their standard calibration curve.


(9) Mass. For linearity verification for gravimetric PM balances, fuel mass scales, and DEF mass scales, use external calibration weights that meet the requirements in § 1065.790. Perform the linearity verification for fuel mass scales and DEF mass scales with the in-use container, installing all objects that interface with the container. For example, this includes all tubes, temperature probes, and objects submerged in the fluid in the container; it also includes tubes, fittings, regulators, and wires, and any other objects attached to the container. We recommend that you develop and apply appropriate buoyancy corrections for the configuration of your mass scale during normal testing, consistent with good engineering judgment. Account for the scale weighing a calibration weight instead of fluid if you calculate buoyancy corrections. You may also correct for the effect of natural convection currents from temperature differences between the container and ambient air. Prepare for linearity verification by taking the following steps for vented and unvented containers:


(i) If the container is vented to ambient, fill the container and tubes with fluid above the minimum level used to trigger a fill operation; drain the fluid down to the minimum level; tare the scale; and perform the linearity verification.


(ii) If the container is rigid and not vented, drain the fluid down to the minimum level; fill all tubes attached to the container to normal operating pressure; tare the scale; and perform the linearity verification.


(e) Measurement systems that require linearity verification. Table 1 of this section indicates measurement systems that require linearity verification, subject to the following provisions:


(1) Perform linearity verification more frequently based on the instrument manufacturer’s recommendation or good engineering judgment.


(2) The expression “xmin” refers to the reference value used during linearity verification that is closest to zero. This is the value used to calculate the first tolerance in Table 1 of this section using the intercept, a0. Note that this value may be zero, positive, or negative depending on the reference values. For example, if the reference values chosen to validate a pressure transducer vary from −10 to −1 kPa, xmin is −1 kPa. If the reference values used to validate a temperature device vary from 290 to 390 K, xmin is 290 K.


(3) The expression “max” generally refers to the absolute value of the reference value used during linearity verification that is furthest from zero. This is the value used to scale the first and third tolerances in Table 1 of this section using a0 and SEE. For example, if the reference values chosen to validate a pressure transducer vary from −10 to −1 kPa, then pmax is +10 kPa. If the reference values used to validate a temperature device vary from 290 to 390 K, then Tmax is 390 K. For gas dividers where “max” is expressed as, xmax/xspan; xmax is the maximum gas concentration used during the verification, xspan is the undivided, undiluted, span gas concentration, and the resulting ratio is the maximum divider point reference value used during the verification (typically 1). The following are special cases where “max” refers to a different value:


(i) For linearity verification of a PM balance, mmax is the typical mass of a PM filter.


(ii) For linearity verification of a torque measurement system used with the engine’s primary output shaft, Tmax is the manufacturer’s specified peak torque of the lowest torque engine expected during testing.


(iii) For linearity verification of a fuel mass scale, mmax is determined based on the range of engines and test interval durations expected during testing. It is the minimum, over all engines expected during testing, of the fuel consumption expected over the minimum test interval duration at the engine’s maximum fuel rate. If the minimum test interval duration used during testing does not change with engine power or if the minimum test interval duration used during testing increases with engine power, mmax is given by Eq. 1065.307-1. Calculate mmax using the following equation:




Where:

m
max,fuel = the manufacturer’s specified maximum fuel rate on the lowest-power engine expected during testing.

tmin = the minimum test interval duration expected during testing. If the minimum test interval duration decreases with engine power, evaluate Eq. 1065.307-1 for the range of engines expected during testing and use the minimum calculated value of mmax,fuel scale.

(iv) For linearity verification of a DEF mass scale, mmax is 10% of the value determined for a fuel mass scale in paragraph (e)(3)(iii) of this section. You may determine mmax for a DEF mass scale by evaluating mmax for a fuel mass scale based only on the DEF-using engines expected during testing.


(v) For linearity verification of a fuel flow rate meter, mmax is the manufacturer’s specified maximum fuel rate of the lowest-power engine expected during testing.


(vi) For linearity verification of a DEF flow rate meter, mmax is 10% of the manufacturer’s specified maximum fuel rate of the lowest-power DEF-using engine expected during testing.


(vii) For linearity verification of an intake-air flow rate meter, n
max is the manufacturer’s specified maximum intake-air flow rate (converted to molar flow rate) of the lowest-power engine expected during testing.


(viii) For linearity verification of a raw exhaust flow rate meter, n
max is the manufacturer’s specified maximum exhaust flow rate (converted to molar flow rate) of the lowest-power engine expected during testing.


(ix) For linearity verification of an electrical-power measurement system used to determine the engine’s primary output shaft torque, Pmax is the manufacturer’s specified maximum power of the lowest-power engine expected during testing.


(x) For linearity verification of an electrical-current measurement system used to determine the engine’s primary output shaft torque, Imax is the maximum current expected on the lowest-power engine expected during testing.


(xi) For linearity verification of an electrical-voltage measurement system used to determine the engine’s primary output shaft torque, Vmax is the minimum peak voltage expected on the range of engines expected during testing.


(4) The specified ranges are inclusive. For example, a specified range of 0.98-1.02 for a1 means 0.98≤a1≤1.02.


(5) Table 2 of this section describes optional verification procedures you may perform instead of linearity verification for certain systems. The following provisions apply for the alternative verification procedures:


(i) Perform the propane check verification described in § 1065.341 at the frequency specified in Table 1 of § 1065.303.


(ii) Perform the carbon balance error verification described in § 1065.543 on all test sequences that use the corresponding system. It must also meet the restrictions listed in Table 2 of this section. You may evaluate the carbon balance error verification multiple ways with different inputs to validate multiple flow-measurement systems.


(6) You must meet the a1 criteria for these quantities only if the absolute value of the quantity is required, as opposed to a signal that is only linearly proportional to the actual value.


(7) Linearity verification is required for the following temperature measurements:


(i) The following temperature measurements always require linearity verification:


(A) Air intake.


(B) Aftertreatment bed(s), for engines tested with aftertreatment devices subject to cold-start testing.


(C) Dilution air for gaseous and PM sampling, including CVS, double-dilution, and partial-flow systems.


(D) PM sample.


(E) Chiller sample, for gaseous sampling systems that use thermal chillers to dry samples and use chiller temperature to calculate the dewpoint at the outlet of the chiller. For your testing, if you choose to use a high alarm temperature setpoint for the chiller temperature as a constant value in determining the amount of water removed from the emission sample, you may use good engineering judgment to verify the accuracy of the high alarm temperature setpoint instead of linearity verification on the chiller temperature. To verify that the alarm trip point value is no less than 2.0 °C below the reference value at the trip point, we recommend that you input a reference simulated temperature signal below the alarm trip point and increase this signal until the high alarm trips.


(F) Transmission oil.


(G) Axle gear oil.


(ii) Linearity verification is required for the following temperature measurements if these temperature measurements are specified by the engine manufacturer:


(A) Fuel inlet.


(B) Air outlet to the test cell’s charge air cooler air outlet, for engines tested with a laboratory heat exchanger that simulates an installed charge air cooler.


(C) Coolant inlet to the test cell’s charge air cooler, for engines tested with a laboratory heat exchanger that simulates an installed charge air cooler.


(D) Oil in the sump/pan.


(E) Coolant before the thermostat, for liquid-cooled engines.


(8) Linearity verification is required for the following pressure measurements:


(i) The following pressure measurements always require linearity verification:


(A) Air intake restriction.


(B) Exhaust back pressure as required in § 1065.130(h).


(C) Barometer.


(D) CVS inlet gage pressure where the raw exhaust enters the tunnel.


(E) Sample dryer, for gaseous sampling systems that use either osmotic-membrane or thermal chillers to dry samples. For your testing, if you choose to use a low alarm pressure setpoint for the sample dryer pressure as a constant value in determining the amount of water removed from the emission sample, you may use good engineering judgment to verify the accuracy of the low alarm pressure setpoint instead of linearity verification on the sample dryer pressure. To verify that the trip point value is no more than 4.0 kPa above the reference value at the trip point, we recommend that you input a reference pressure signal above the alarm trip point and decrease this signal until the low alarm trips.


(ii) Linearity verification is required for the following pressure measurements if these pressure measurements are specified by the engine manufacturer:


(A) The test cell’s charge air cooler and interconnecting pipe pressure drop, for turbo-charged engines tested with a laboratory heat exchanger that simulates an installed charge air cooler.


(B) Fuel outlet.


(f) Performance criteria for measurement systems. Table 1 follows:



(g) Alternative verification procedures. Table 2 follows:


Table 2 of § 1065.307 – Optional Verification to Linearity Verification

Measurement system
§ 1065.341
§ 1065.543
Restrictions for § 1065.543
Intake-air flow rateYesYesDetermine raw exhaust flow rate using the intake-air flow rate signal as an input into Eq. 1065.655-24 and determine mass of CO2 over each test interval input into Eq. 1065.643-6 using samples taken from the raw exhaust (continuous or bag, and with or without a PFD).
Dilution air flow rate for CVSYesNoNot allowed.
Diluted exhaust flow rate for CVSYesYesDetermine mass of CO2 over each test interval input into Eq. 1065.643-6 using samples taken from the CVS (continuous or bag, and with or without a PFD).
Raw exhaust flow rate for exhaust stackYesYesDetermine mass of CO2 over each test interval input into Eq. 1065.643-6 using samples taken from the raw exhaust (continuous or bag, and with or without a PFD).
Flow measurements in a PFD (usually dilution air and diluted exhaust streams) used to determine the dilution ratio in the PFDYesYesDetermine mass of CO2 over each test interval input into Eq. 1065.643-6 using samples taken from the PFD (continuous or bag).
Batch sampler flow ratesYesNoNot allowed.
Fuel mass flow rateNoYesDetermine mass of a carbon-carrying fluid stream used as an input into Eq. 1065.643-1 using the fuel mass flow rate meter.
Fuel mass scaleNoYesDetermine mass of a carbon-carrying fluid stream used as an input into Eq. 1065.643-1 using the fuel mass scale.

[79 FR 23763, Apr. 28, 2014, as amended at 86 FR 34538, June 29, 2021]


§ 1065.308 Continuous gas analyzer system-response and updating-recording verification – for gas analyzers not continuously compensated for other gas species.

(a) Scope and frequency. This section describes a verification procedure for system response and updating-recording frequency for continuous gas analyzers that output a gas species mole fraction (i.e., concentration) using a single gas detector, i.e., gas analyzers not continuously compensated for other gas species measured with multiple gas detectors. See § 1065.309 for verification procedures that apply to continuous gas analyzers that are continuously compensated for other gas species measured with multiple gas detectors. Perform this verification to determine the system response of the continuous gas analyzer and its sampling system. This verification is required for continuous gas analyzers used for transient or ramped-modal testing. You need not perform this verification for batch gas analyzer systems or for continuous gas analyzer systems that are used only for discrete-mode testing. Perform this verification after initial installation (i.e., test cell commissioning) and after any modifications to the system that would change system response. For example, perform this verification if you add a significant volume to the transfer lines by increasing their length or adding a filter; or if you reduce the frequency at which the gas analyzer updates its output or the frequency at which you sample and record gas-analyzer concentrations.


(b) Measurement principles. This test verifies that the updating and recording frequencies match the overall system response to a rapid change in the value of concentrations at the sample probe. Gas analyzers and their sampling systems must be optimized such that their overall response to a rapid change in concentration is updated and recorded at an appropriate frequency to prevent loss of information. This test also verifies that the measurement system meets a minimum response time. You may use the results of this test to determine transformation time, t50, for the purposes of time alignment of continuous data in accordance with § 1065.650(c)(2)(i). You may also use an alternate procedure to determine t50 in accordance with good engineering judgment. Note that any such procedure for determining t50 must account for both transport delay and analyzer response time.


(c) System requirements. Demonstrate that each continuous analyzer has adequate update and recording frequencies and has a minimum rise time and a minimum fall time during a rapid change in gas concentration. You must meet one of the following criteria:


(1) The product of the mean rise time, t10-90, and the frequency at which the system records an updated concentration must be at least 5, and the product of the mean fall time, t90-10, and the frequency at which the system records an updated concentration must be at least 5. If the recording frequency is different than the analyzer’s output update frequency, you must use the lower of these two frequencies for this verification, which is referred to as the updating-recording frequency. This verification applies to the nominal updating and recording frequencies. This criterion makes no assumption regarding the frequency content of changes in emission concentrations during emission testing; therefore, it is valid for any testing. Also, the mean rise time must be at or below 10 seconds and the mean fall time must be at or below 10 seconds.


(2) The frequency at which the system records an updated concentration must be at least 5 Hz. This criterion assumes that the frequency content of significant changes in emission concentrations during emission testing do not exceed 1 Hz. Also, the mean rise time must be at or below 10 seconds and the mean fall time must be at or below 10 seconds.


(3) You may use other criteria if we approve the criteria in advance.


(4) You may meet the overall PEMS verification in § 1065.920 instead of the verification in this section for field testing with PEMS.


(d) Procedure. Use the following procedure to verify the response of each continuous gas analyzer:


(1) Instrument setup. Follow the analyzer manufacturer’s start-up and operating instructions. Adjust the measurement system as needed to optimize performance. Run this verification with the analyzer operating in the same manner you will use for emission testing. If the analyzer shares its sampling system with other analyzers, and if gas flow to the other analyzers will affect the system response time, then start up and operate the other analyzers while running this verification test. You may run this verification test on multiple analyzers sharing the same sampling system at the same time. If you use any analog or real-time digital filters during emission testing, you must operate those filters in the same manner during this verification.


(2) Equipment setup. We recommend using minimal lengths of gas transfer lines between all connections and fast-acting three-way valves (2 inlets, 1 outlet) to control the flow of zero and blended span gases to the sample system’s probe inlet or a tee near the outlet of the probe. If you inject the gas at a tee near the outlet of the probe, you may correct the transformation time, t50, for an estimate of the transport time from the probe inlet to the tee. Normally the gas flow rate is higher than the sample flow rate and the excess is overflowed out the inlet of the probe. If the gas flow rate is lower than the sample flow rate, the gas concentrations must be adjusted to account for the dilution from ambient air drawn into the probe. We recommend you use the final, stabilized analyzer reading as the final gas concentration. Select span gases for the species being measured. You may use binary or multi-gas span gases. You may use a gas blending or mixing device to blend span gases. A gas blending or mixing device is recommended when blending span gases diluted in N2 with span gases diluted in air. You may use a multi-gas span gas, such as NO-CO-CO2-C3H8-CH4, to verify multiple analyzers at the same time. If you use standard binary span gases, you must run separate response tests for each analyzer. In designing your experimental setup, avoid pressure pulsations due to stopping the flow through the gas-blending device. The change in gas concentration must be at least 20% of the analyzer’s range.


(3) Data collection. (i) Start the flow of zero gas.


(ii) Allow for stabilization, accounting for transport delays and the slowest analyzer’s full response.


(iii) Start recording data. For this verification you must record data at a frequency greater than or equal to that of the updating-recording frequency used during emission testing. You may not use interpolation or filtering to alter the recorded values.


(iv) Switch the flow to allow the blended span gases to flow to the analyzer. If you intend to use the data from this test to determine t50 for time alignment, record this time as t0.


(v) Allow for transport delays and the slowest analyzer’s full response.


(vi) Switch the flow to allow zero gas to flow to the analyzer. If you intend to use the data from this test to determine t50 for time alignment, record this time as t100.


(vii) Allow for transport delays and the slowest analyzer’s full response.


(viii) Repeat the steps in paragraphs (d)(3)(iv) through (vii) of this section to record seven full cycles, ending with zero gas flowing to the analyzers.


(ix) Stop recording.


(e) Performance evaluation. (1) If you choose to demonstrate compliance with paragraph (c)(1) of this section, use the data from paragraph (d)(3) of this section to calculate the mean rise time, t10-90, and mean fall time, t90-10, for each of the analyzers being verified. You may use interpolation between recorded values to determine rise and fall times. If the recording frequency used during emission testing is different from the analyzer’s output update frequency, you must use the lower of these two frequencies for this verification. Multiply these times (in seconds) by their respective updating-recording frequencies in Hertz (1/second). The resulting product must be at least 5 for both rise time and fall time. If either value is less than 5, increase the updating-recording frequency, or adjust the flows or design of the sampling system to increase the rise time and fall time as needed. You may also configure analog or digital filters before recording to increase rise and fall times. In no case may the mean rise time or mean fall time be greater than 10 seconds.


(2) If a measurement system fails the criterion in paragraph (e)(1) of this section, ensure that signals from the system are updated and recorded at a frequency of at least 5 Hz. In no case may the mean rise time or mean fall time be greater than 10 seconds.


(3) If a measurement system fails the criteria in paragraphs (e)(1) and (2) of this section, you may use the measurement system only if the deficiency does not adversely affect your ability to show compliance with the applicable standards.


(f) Transformation time, t50, determination. If you choose to determine t50 for purposes of time alignment using data generated in paragraph (d)(3) of this section, calculate the mean t0-50 and the mean t100-50 from the recorded data. Average these two values to determine the final t50 for the purposes of time alignment in accordance with § 1065.650(c)(2)(i).


(g) Optional procedure. Instead of using a three-way valve to switch between zero and span gases, you may use a fast-acting two-way valve to switch sampling between ambient air and span gas at the probe inlet. For this alternate procedure, the following provisions apply:


(1) If your probe is sampling from a continuously flowing gas stream (e.g., a CVS tunnel), you may adjust the span gas flow rate to be different than the sample flow rate.


(2) If your probe is sampling from a gas stream that is not continuously flowing (e.g., a raw exhaust stack), you must adjust the span gas flow rate to be less than the sample flow rate so ambient air is always being drawn into the probe inlet. This avoids errors associated with overflowing span gas out of the probe inlet and drawing it back in when sampling ambient air.


(3) When sampling ambient air or ambient air mixed with span gas, all the analyzer readings must be stable within ±0.5% of the target gas concentration step size. If any analyzer reading is outside the specified range, you must resolve the problem and verify that all the analyzer readings meet this specification.


(4) For oxygen analyzers, you may use purified N2 as the zero gas and ambient air (plus purified N2 if needed) as the reference gas. Perform the verification with seven repeat measurements that each consist of stabilizing with purified N2, switching to ambient air and observing the analyzer’s rise and stabilized reading, followed by switching back to purified N2 and observing the analyzer’s fall and stabilized reading.


[73 FR 59325, Oct. 8, 2008, as amended at 79 FR 23766, Apr. 28, 2014]


§ 1065.309 Continuous gas analyzer system-response and updating-recording verification – for gas analyzers continuously compensated for other gas species.

(a) Scope and frequency. This section describes a verification procedure for system response and updating-recording frequency for continuous gas analyzers that output a single gas species mole fraction (i.e., concentration) based on a continuous combination of multiple gas species measured with multiple detectors (i.e., gas analyzers continuously compensated for other gas species). See § 1065.308 for verification procedures that apply to continuous gas analyzers that are not continuously compensated for other gas species or that use only one detector for gaseous species. Perform this verification to determine the system response of the continuous gas analyzer and its sampling system. This verification is required for continuous gas analyzers used for transient or ramped-modal testing. You need not perform this verification for batch gas analyzers or for continuous gas analyzers that are used only for discrete-mode testing. For this check we consider water vapor a gaseous constituent. This verification does not apply to any processing of individual analyzer signals that are time-aligned to their t50 times and were verified according to § 1065.308. For example, this verification does not apply to correction for water removed from the sample done in post-processing according to § 1065.659 (40 CFR 1066.620 for vehicle testing) and it does not apply to NMHC determination from THC and CH4 according to § 1065.660. Perform this verification after initial installation (i.e., test cell commissioning) and after any modifications to the system that would change the system response.


(b) Measurement principles. This procedure verifies that the updating and recording frequencies match the overall system response to a rapid change in the value of concentrations at the sample probe. It indirectly verifies the time-alignment and uniform response of all the continuous gas detectors used to generate a continuously combined/compensated concentration measurement signal. Gas analyzer systems must be optimized such that their overall response to rapid change in concentration is updated and recorded at an appropriate frequency to prevent loss of information. This test also verifies that the measurement system meets a minimum response time. For this procedure, ensure that all compensation algorithms and humidity corrections are turned on. You may use the results of this test to determine transformation time, t50, for the purposes of time alignment of continuous data in accordance with § 1065.650(c)(2)(i). You may also use an alternate procedure to determine t50 consistent with good engineering judgment. Note that any such procedure for determining t50 must account for both transport delay and analyzer response time.


(c) System requirements. Demonstrate that each continuously combined/compensated concentration measurement has adequate updating and recording frequencies and has a minimum rise time and a minimum fall time during a system response to a rapid change in multiple gas concentrations, including H2O concentration if H2O compensation is applied. You must meet one of the following criteria:


(1) The product of the mean rise time, t10-90, and the frequency at which the system records an updated concentration must be at least 5, and the product of the mean fall time, t90-10, and the frequency at which the system records an updated concentration must be at least 5. If the recording frequency is different than the update frequency of the continuously combined/compensated signal, you must use the lower of these two frequencies for this verification. This criterion makes no assumption regarding the frequency content of changes in emission concentrations during emission testing; therefore, it is valid for any testing. Also, the mean rise time must be at or below 10 seconds and the mean fall time must be at or below 10 seconds.


(2) The frequency at which the system records an updated concentration must be at least 5 Hz. This criterion assumes that the frequency content of significant changes in emission concentrations during emission testing do not exceed 1 Hz. Also, the mean rise time must be at or below 10 seconds and the mean fall time must be at or below 10 seconds.


(3) You may use other criteria if we approve them in advance.


(4) You may meet the overall PEMS verification in § 1065.920 instead of the verification in this section for field testing with PEMS.


(d) Procedure. Use the following procedure to verify the response of each continuously compensated analyzer (verify the combined signal, not each individual continuously combined concentration signal):


(1) Instrument setup. Follow the analyzer manufacturer’s start-up and operating instructions. Adjust the measurement system as needed to optimize performance. Run this verification with the analyzer operating in the same manner you will use for emission testing. If the analyzer shares its sampling system with other analyzers, and if gas flow to the other analyzers will affect the system response time, then start up and operate the other analyzers while running this verification test. You may run this verification test on multiple analyzers sharing the same sampling system at the same time. If you use any analog or real-time digital filters during emission testing, you must operate those filters in the same manner during this verification.


(2) Equipment setup. We recommend using minimal lengths of gas transfer lines between all connections and fast-acting three-way valves (2 inlets, 1 outlet) to control the flow of zero and blended span gases to the sample system’s probe inlet or a tee near the outlet of the probe. If you inject the gas at a tee near the outlet of the probe, you may correct the transformation time, t50, for an estimate of the transport time from the probe inlet to the tee. Normally the gas flow rate is higher than the sample flow rate and the excess is overflowed out the inlet of the probe. If the gas flow rate is lower than the sample flow rate, the gas concentrations must be adjusted to account for the dilution from ambient air drawn into the probe. We recommend you use the final, stabilized analyzer reading as the final gas concentration. Select span gases for the species being continuously combined, other than H2O. Select concentrations of compensating species that will yield concentrations of these species at the analyzer inlet that covers the range of concentrations expected during testing. You may use binary or multi-gas span gases. You may use a gas blending or mixing device to blend span gases. A gas blending or mixing device is recommended when blending span gases diluted in N2 with span gases diluted in air. You may use a multi-gas span gas, such as NO-CO-CO2-C3H8-CH4, to verify multiple analyzers at the same time. In designing your experimental setup, avoid pressure pulsations due to stopping the flow through the gas blending device. The change in gas concentration must be at least 20% of the analyzer’s range. If H2O correction is applicable, then span gases must be humidified before entering the analyzer; however, you may not humidify NO2 span gas by passing it through a sealed humidification vessel that contains H2O. You must humidify NO2 span gas with another moist gas stream. We recommend humidifying your NO-CO-CO2-C3H8-CH4, balance N2, blended gas by bubbling the gas mixture that meets the specifications in § 1065.750 through distilled H2O in a sealed vessel and then mixing the gas with dry NO2 gas, balance purified air, or by using a device that introduces distilled H2O as vapor into a controlled span gas flow. If the sample does not pass through a dryer during emission testing, humidify your span gas to an H2O level at or above the maximum expected during emission testing. If the sample passes through a dryer during emission testing, it must pass the sample dryer verification check in § 1065.342, and you must humidify your span gas to an H2O level at or above the level determined in § 1065.145(e)(2) for that dryer. If you are humidifying span gases without NO2, use good engineering judgment to ensure that the wall temperatures in the transfer lines, fittings, and valves from the humidifying system to the probe are above the dewpoint required for the target H2O content. If you are humidifying span gases with NO2, use good engineering judgment to ensure that there is no condensation in the transfer lines, fittings, or valves from the point where humidified gas is mixed with NO2 span gas to the probe. We recommend that you design your setup so that the wall temperatures in the transfer lines, fittings, and valves from the humidifying system to the probe are at least 5 °C above the local sample gas dewpoint. Operate the measurement and sample handling system as you do for emission testing. Make no modifications to the sample handling system to reduce the risk of condensation. Flow humidified gas through the sampling system before this check to allow stabilization of the measurement system’s sampling handling system to occur, as it would for an emission test.


(3) Data collection. (i) Start the flow of zero gas.


(ii) Allow for stabilization, accounting for transport delays and the slowest analyzer’s full response.


(iii) Start recording data. For this verification you must record data at a frequency greater than or equal to that of the updating-recording frequency used during emission testing. You may not use interpolation or filtering to alter the recorded values.


(iv) Switch the flow to allow the blended span gases to flow to the analyzer. If you intend to use the data from this test to determine t50 for time alignment, record this time as t0.


(v) Allow for transport delays and the slowest analyzer’s full response.


(vi) Switch the flow to allow zero gas to flow to the analyzer. If you intend to use the data from this test to determine t50 for time alignment, record this time as t100.


(vii) Allow for transport delays and the slowest analyzer’s full response.


(viii) Repeat the steps in paragraphs (d)(3)(iv) through (vii) of this section to record seven full cycles, ending with zero gas flowing to the analyzers.


(ix) Stop recording.


(e) Performance evaluations. (1) If you choose to demonstrate compliance with paragraph (c)(1) of this section, use the data from paragraph (d)(3) of this section to calculate the mean rise time, t10-90, and mean fall time, t90-10, for the continuously combined signal from each analyzer being verified. You may use interpolation between recorded values to determine rise and fall times. If the recording frequency used during emission testing is different from the analyzer’s output update frequency, you must use the lower of these two frequencies for this verification. Multiply these times (in seconds) by their respective updating-recording frequencies in Hz (1/second). The resulting product must be at least 5 for both rise time and fall time. If either value is less than 5, increase the updating-recording frequency or adjust the flows or design of the sampling system to increase the rise time and fall time as needed. You may also configure analog or digital filters before recording to increase rise and fall times. In no case may the mean rise time or mean fall time be greater than 10 seconds.


(2) If a measurement system fails the criterion in paragraph (e)(1) of this section, ensure that signals from the system are updated and recorded at a frequency of at least 5 Hz. In no case may the mean rise time or mean fall time be greater than 10 seconds.


(3) If a measurement system fails the criteria in paragraphs (e)(1) and (2) of this section, you may use the measurement system only if the deficiency does not adversely affect your ability to show compliance with the applicable standards.


(f) Transformation time, t50, determination. If you choose to determine t50 for purposes of time alignment using data generated in paragraph (d)(3) of this section, calculate the mean t0-50 and the mean t100-50 from the recorded data. Average these two values to determine the final t50 for the purposes of time alignment in accordance with § 1065.650(c)(2)(i).


(g) Optional procedure. Follow the optional procedures in § 1065.308(g), noting that you may use compensating gases mixed with ambient air for oxygen analyzers.


(h) Analyzers with H2O compensation sampling downstream of a sample dryer. You may omit humidifying the span gas as described in this paragraph (h). If an analyzer compensates only for H2O, you may apply the requirements of § 1065.308 instead of the requirements of this section. You may omit humidifying the span gas if you meet the following conditions:


(1) The analyzer is located downstream of a sample dryer.


(2) The maximum value for H2O mole fraction downstream of the dryer must be less than or equal to 0.010. Verify this during each sample dryer verification according to § 1065.342.


[73 FR 59326, Oct. 8, 2008, as amended at 75 FR 23039, Apr. 30, 2010; 79 FR 23767, Apr. 28, 2014; 86 FR 34541, June 29, 2021]


Measurement of Engine Parameters and Ambient Conditions

§ 1065.310 Torque calibration.

(a) Scope and frequency. Calibrate all torque-measurement systems including dynamometer torque measurement transducers and systems upon initial installation and after major maintenance. Use good engineering judgment to repeat the calibration. Follow the torque transducer manufacturer’s instructions for linearizing your torque sensor’s output. We recommend that you calibrate the torque-measurement system with a reference force and a lever arm.


(b) Recommended procedure to quantify lever-arm length. Quantify the lever-arm length, NIST-traceable within ±0.5% uncertainty. The lever arm’s length must be measured from the centerline of the dynamometer to the point at which the reference force is measured. The lever arm must be perpendicular to gravity (i.e., horizontal), and it must be perpendicular to the dynamometer’s rotational axis. Balance the lever arm’s torque or quantify its net hanging torque, NIST-traceable within ±1% uncertainty, and account for it as part of the reference torque.


(c) Recommended procedure to quantify reference force. We recommend dead-weight calibration, but you may use either of the following procedures to quantify the reference force, NIST-traceable within ±0.5% uncertainty.


(1) Dead-weight calibration. This technique applies a known force by hanging known weights at a known distance along a lever arm. Make sure the weights’ lever arm is perpendicular to gravity (i.e., horizontal) and perpendicular to the dynamometer’s rotational axis. Apply at least six calibration-weight combinations for each applicable torque-measuring range, spacing the weight quantities about equally over the range. Oscillate or rotate the dynamometer during calibration to reduce frictional static hysteresis. Determine each weight’s reference force by multiplying its NIST-traceable mass by the local acceleration of Earth’s gravity, as described in § 1065.630. Calculate the reference torque as the weights’ reference force multiplied by the lever arm reference length.


(2) Strain gage, load transducer, or proving ring calibration. This technique applies force either by hanging weights on a lever arm (these weights and their lever arm length are not used as part of the reference torque determination) or by operating the dynamometer at different torques. Apply at least six force combinations for each applicable torque-measuring range, spacing the force quantities about equally over the range. Oscillate or rotate the dynamometer during calibration to reduce frictional static hysteresis. In this case, the reference torque is determined by multiplying the force output from the reference meter (such as a strain gage, load transducer, or proving ring) by its effective lever-arm length, which you measure from the point where the force measurement is made to the dynamometer’s rotational axis. Make sure you measure this length perpendicular to the reference meter’s measurement axis and perpendicular to the dynamometer’s rotational axis.


[79 FR 23768, Apr. 28, 2014]


§ 1065.315 Pressure, temperature, and dewpoint calibration.

(a) Calibrate instruments for measuring pressure, temperature, and dewpoint upon initial installation. Follow the instrument manufacturer’s instructions and use good engineering judgment to repeat the calibration, as follows:


(1) Pressure. We recommend temperature-compensated, digital-pneumatic, or deadweight pressure calibrators, with data-logging capabilities to minimize transcription errors. We recommend using calibration reference quantities that are NIST-traceable within 0.5% uncertainty.


(2) Temperature. We recommend digital dry-block or stirred-liquid temperature calibrators, with data logging capabilities to minimize transcription errors. We recommend using calibration reference quantities that are NIST-traceable within 0.5% uncertainty. You may perform linearity verification for temperature measurement systems with thermocouples, RTDs, and thermistors by removing the sensor from the system and using a simulator in its place. Use a NIST-traceable simulator that is independently calibrated and, as appropriate, cold-junction compensated. The simulator uncertainty scaled to absolute temperature must be less than 0.5% of Tmax. If you use this option, you must use sensors that the supplier states are accurate to better than 0.5% of Tmax compared with their standard calibration curve.


(3) Dewpoint. We recommend a minimum of three different temperature-equilibrated and temperature-monitored calibration salt solutions in containers that seal completely around the dewpoint sensor. We recommend using calibration reference quantities that are NIST-traceable within 0.5% uncertainty.


(b) You may remove system components for off-site calibration. We recommend specifying calibration reference quantities that are NIST-traceable within 0.5% uncertainty.


[70 FR 40516, July 13, 2005, as amended at 73 FR 37305, June 30, 2008; 75 FR 23040, Apr. 30, 2010; 79 FR 23768, Apr. 28, 2014]


Flow-Related Measurements

§ 1065.320 Fuel-flow calibration.

(a) Calibrate fuel-flow meters upon initial installation. Follow the instrument manufacturer’s instructions and use good engineering judgment to repeat the calibration.


(b) [Reserved]


(c) You may remove system components for off-site calibration. When installing a flow meter with an off-site calibration, we recommend that you consider the effects of the tubing configuration upstream and downstream of the flow meter. We recommend specifying calibration reference quantities that are NIST-traceable within 0.5% uncertainty.


[70 FR 40516, July 13, 2005, as amended at 86 FR 34541, June 29, 2021]


§ 1065.325 Intake-flow calibration.

(a) Calibrate intake-air flow meters upon initial installation. Follow the instrument manufacturer’s instructions and use good engineering judgment to repeat the calibration. We recommend using a calibration subsonic venturi, ultrasonic flow meter or laminar flow element. We recommend using calibration reference quantities that are NIST-traceable within 0.5% uncertainty.


(b) You may remove system components for off-site calibration. When installing a flow meter with an off-site calibration, we recommend that you consider the effects of the tubing configuration upstream and downstream of the flow meter. We recommend specifying calibration reference quantities that are NIST-traceable within 0.5% uncertainty.


(c) If you use a subsonic venturi or ultrasonic flow meter for intake flow measurement, we recommend that you calibrate it as described in § 1065.340.


§ 1065.330 Exhaust-flow calibration.

(a) Calibrate exhaust-flow meters upon initial installation. Follow the instrument manufacturer’s instructions and use good engineering judgment to repeat the calibration. We recommend that you use a calibration subsonic venturi or ultrasonic flow meter and simulate exhaust temperatures by incorporating a heat exchanger between the calibration meter and the exhaust-flow meter. If you can demonstrate that the flow meter to be calibrated is insensitive to exhaust temperatures, you may use other reference meters such as laminar flow elements, which are not commonly designed to withstand typical raw exhaust temperatures. We recommend using calibration reference quantities that are NIST-traceable within 0.5% uncertainty.


(b) You may remove system components for off-site calibration. When installing a flow meter with an off-site calibration, we recommend that you consider the effects of the tubing configuration upstream and downstream of the flow meter. We recommend specifying calibration reference quantities that are NIST-traceable within 0.5% uncertainty.


(c) If you use a subsonic venturi or ultrasonic flow meter for raw exhaust flow measurement, we recommend that you calibrate it as described in § 1065.340.


§ 1065.340 Diluted exhaust flow (CVS) calibration.

(a) Overview. This section describes how to calibrate flow meters for diluted exhaust constant-volume sampling (CVS) systems.


(b) Scope and frequency. Perform this calibration while the flow meter is installed in its permanent position, except as allowed in paragraph (c) of this section. Perform this calibration after you change any part of the flow configuration upstream or downstream of the flow meter that may affect the flow-meter calibration. Perform this calibration upon initial CVS installation and whenever corrective action does not resolve a failure to meet the diluted exhaust flow verification (i.e., propane check) in § 1065.341.


(c) Ex-situ CFV and SSV calibration. You may remove a CFV or SSV from its permanent position for calibration as long as it meets the following requirements when installed in the CVS:


(1) Upon installation of the CFV or SSV into the CVS, use good engineering judgment to verify that you have not introduced any leaks between the CVS inlet and the venturi.


(2) After ex-situ venturi calibration, you must verify all venturi flow combinations for CFVs or at minimum of 10 flow points for an SSV using the propane check as described in § 1065.341. Your propane check result for each venturi flow point may not exceed the tolerance in § 1065.341(f)(5).


(3) To verify your ex-situ calibration for a CVS with more than a single CFV, perform the following check to verify that there are no flow meter entrance effects that can prevent you from passing this verification.


(i) Use a constant flow device like a CFO kit to deliver a constant flow of propane to the dilution tunnel.


(ii) Measure hydrocarbon concentrations at a minimum of 10 separate flow rates for an SSV flow meter, or at all possible flow combinations for a CFV flow meter, while keeping the flow of propane constant. We recommend selecting CVS flow rates in a random order.


(iii) Measure the concentration of hydrocarbon background in the dilution air at the beginning and end of this test. Subtract the average background concentration from each measurement at each flow point before performing the regression analysis in paragraph (c)(3)(iv) of this section.


(iv) Perform a power regression using all the paired values of flow rate and corrected concentration to obtain a relationship in the form of y = a · x
b. Use concentration as the independent variable and flow rate as the dependent variable. For each data point, calculate the difference between the measured flow rate and the value represented by the curve fit. The difference at each point must be less than ±1% of the appropriate regression value. The value of b must be between −1.005 and −0.995. If your results do not meet these limits, take corrective action consistent with § 1065.341(a).


(d) Reference flow meter. Calibrate a CVS flow meter using a reference flow meter such as a subsonic venturi flow meter, a long-radius ASME/NIST flow nozzle, a smooth approach orifice, a laminar flow element, a set of critical flow venturis, or an ultrasonic flow meter. Use a reference flow meter that reports quantities that are NIST-traceable within ±1% uncertainty. Use this reference flow meter’s response to flow as the reference value for CVS flow-meter calibration.


(e) Configuration. Calibrate the system with any upstream screens or other restrictions that will be used during testing and that could affect the flow ahead of the CVS flow meter, using good engineering judgment to minimize the effect on the flow distribution. You may not use any upstream screen or other restriction that could affect the flow ahead of the reference flow meter, unless the flow meter has been calibrated with such a restriction. In the case of a free standing SSV reference flow meter, you may not have any upstream screens.


(f) PDP calibration. Calibrate a positive-displacement pump (PDP) to determine a flow-versus-PDP speed equation that accounts for flow leakage across sealing surfaces in the PDP as a function of PDP inlet pressure. Determine unique equation coefficients for each speed at which you operate the PDP. Calibrate a PDP flow meter as follows:


(1) Connect the system as shown in Figure 1 of this section.


(2) Leaks between the calibration flow meter and the PDP must be less than 0.3% of the total flow at the lowest calibrated flow point; for example, at the highest restriction and lowest PDP-speed point.


(3) While the PDP operates, maintain a constant temperature at the PDP inlet within ±2% of the mean absolute inlet temperature, T
in.


(4) Set the PDP speed to the first speed point at which you intend to calibrate.


(5) Set the variable restrictor to its wide-open position.


(6) Operate the PDP for at least 3 min to stabilize the system. Continue operating the PDP and record the mean values of at least 30 seconds of sampled data of each of the following quantities:


(i) The mean flow rate of the reference flow meter, n
ref. This may include several measurements of different quantities, such as reference meter pressures and temperatures, for calculating n
ref.


(ii) The mean temperature at the PDP inlet, T
in.


(iii) The mean static absolute pressure at the PDP inlet, p
in.


(iv) The mean static absolute pressure at the PDP outlet, p
out.


(v) The mean PDP speed, f
nPDP.


(7) Incrementally close the restrictor valve to decrease the absolute pressure at the inlet to the PDP, p
in.


(8) Repeat the steps in paragraphs (e)(6) and (7) of this section to record data at a minimum of six restrictor positions ranging from the wide open restrictor position to the minimum expected pressure at the PDP inlet or the maximum expected differential (outlet minus inlet) pressure across the PDP during testing.


(9) Calibrate the PDP by using the collected data and the equations in § 1065.640.


(10) Repeat the steps in paragraphs (e)(6) through (9) of this section for each speed at which you operate the PDP.


(11) Use the equations in § 1065.642 to determine the PDP flow equation for emission testing.


(12) Verify the calibration by performing a CVS verification (i.e., propane check) as described in § 1065.341.


(13) During emission testing ensure that the PDP is not operated either below the lowest inlet pressure point or above the highest differential pressure point in the calibration data.


(g) SSV calibration. Calibrate a subsonic venturi (SSV) to determine its calibration coefficient, Cd, for the expected range of inlet pressures. Calibrate an SSV flow meter as follows:


(1) Connect the system as shown in Figure 1 of this section.


(2) Verify that any leaks between the calibration flow meter and the SSV are less than 0.3% of the total flow at the highest restriction.


(3) Start the blower downstream of the SSV.


(4) While the SSV operates, maintain a constant temperature at the SSV inlet within ±2% of the mean absolute inlet temperature, T
in.


(5) Set the variable restrictor or variable-speed blower to a flow rate greater than the greatest flow rate expected during testing. You may not extrapolate flow rates beyond calibrated values, so we recommend that you make sure the Reynolds number, Re#, at the SSV throat at the greatest calibrated flow rate is greater than the maximum Re# expected during testing.


(6) Operate the SSV for at least 3 min to stabilize the system. Continue operating the SSV and record the mean of at least 30 seconds of sampled data of each of the following quantities:


(i) The mean flow rate of the reference flow meter n
ref. This may include several measurements of different quantities for calculating n
ref, such as reference meter pressures and temperatures.


(ii) Optionally, the mean dewpoint of the calibration air,T
dew. See § 1065.640 for permissible assumptions.


(iii) The mean temperature at the venturi inlet,T
in.


(iv) The mean static absolute pressure at the venturi inlet, P
in.


(v) The mean static differential pressure between the static pressure at the venturi inlet and the static pressure at the venturi throat, ΔP
SSV.


(7) Incrementally close the restrictor valve or decrease the blower speed to decrease the flow rate.


(8) Repeat the steps in paragraphs (g)(6) and (7) of this section to record data at a minimum of ten flow rates.


(9) Determine an equation to quantify Cd as a function of Re# by using the collected data and the equations in § 1065.640. Section 1065.640 also includes statistical criteria for validating the Cd versus Re# equation.


(10) Verify the calibration by performing a CVS verification (i.e., propane check) as described in § 1065.341 using the new Cd versus Re# equation.


(11) Use the SSV only between the minimum and maximum calibrated Re#. If you want to use the SSV at a lower or higher Re#, you must recalibrate the SSV.


(12) Use the equations in § 1065.642 to determine SSV flow during a test.


(h) CFV calibration. Calibrate a critical-flow venturi (CFV) to verify its discharge coefficient, Cd, up to the highest expected pressure ratio, r, according to § 1065.640. Calibrate a CFV flow meter as follows:


(1) Connect the system as shown in Figure 1 of this section.


(2) Verify that any leaks between the calibration flow meter and the CFV are less than 0.3% of the total flow at the highest restriction.


(3) Start the blower downstream of the CFV.


(4) While the CFV operates, maintain a constant temperature at the CFV inlet within ±2% of the mean absolute inlet temperature, T
in.


(5) Set the variable restrictor to its wide-open position. Instead of a variable restrictor, you may alternately vary the pressure downstream of the CFV by varying blower speed or by introducing a controlled leak. Note that some blowers have limitations on nonloaded conditions.


(6) Operate the CFV for at least 3 min to stabilize the system. Continue operating the CFV and record the mean values of at least 30 seconds of sampled data of each of the following quantities:


(i) The mean flow rate of the reference flow meter, n
ref. This may include several measurements of different quantities, such as reference meter pressures and temperatures, for calculating n
ref.


(ii) The mean dewpoint of the calibration air,T
dew. See § 1065.640 for permissible assumptions during emission measurements.


(iii) The mean temperature at the venturi inlet,T
in.


(iv) The mean static absolute pressure at the venturi inlet, P
in.


(v) The mean static differential pressure between the CFV inlet and the CFV outlet, ΔP
CFV.


(7) Incrementally close the restrictor valve or decrease the downstream pressure to decrease the differential pressure across the CFV, ΔpCFV.


(8) Repeat the steps in paragraphs (f)(6) and (7) of this section to record mean data at a minimum of ten restrictor positions, such that you test the fullest practical range of ΔP
CFV expected during testing. We do not require that you remove calibration components or CVS components to calibrate at the lowest possible restrictions.


(9) Determine Cd and the highest allowable pressure ratio, r, according to § 1065.640.


(10) Use Cd to determine CFV flow during an emission test. Do not use the CFV above the highest allowed r, as determined in § 1065.640.


(11) Verify the calibration by performing a CVS verification (i.e., propane check) as described in § 1065.341.


(12) If your CVS is configured to operate more than one CFV at a time in parallel, calibrate your CVS by one of the following:


(i) Calibrate every combination of CFVs according to this section and § 1065.640. Refer to § 1065.642 for instructions on calculating flow rates for this option.


(ii) Calibrate each CFV according to this section and § 1065.640. Refer to § 1065.642 for instructions on calculating flow rates for this option.


(i) Ultrasonic flow meter calibration. [Reserved]



[70 FR 40516, July 13, 2005, as amended at 73 FR 37305, June 30, 2008; 75 FR 68463, Nov. 8, 2010; 76 FR 57445, Sept. 15, 2011; 81 FR 74165, Oct. 25, 2016]


§ 1065.341 CVS and PFD flow verification (propane check).

This section describes two optional methods, using propane as a tracer gas, to verify CVS and PFD flow streams. You may use good engineering judgment and safe practices to use other tracer gases, such as CO2 or CO. The first method, described in paragraphs (a) through (e) of this section, applies for the CVS diluted exhaust flow measurement system. The first method may also apply for other single-flow measurement systems as described in Table 2 of § 1065.307. Paragraph (g) of this section describes a second method you may use to verify flow measurements in a PFD for determining the PFD dilution ratio.


(a) A propane check uses either a reference mass or a reference flow rate of C3H8 as a tracer gas in a CVS. Note that if you use a reference flow rate, account for any non-ideal gas behavior of C3H8 in the reference flow meter. Refer to §§ 1065.640 and 1065.642, which describe how to calibrate and use certain flow meters. Do not use any ideal gas assumptions in §§ 1065.640 and 1065.642. The propane check compares the calculated mass of injected C3H8 using HC measurements and CVS flow rate measurements with the reference value.


(b) Prepare for the propane check as follows:


(1) If you use a reference mass of C3H8 instead of a reference flow rate, obtain a cylinder charged with C3H8. Determine the reference cylinder’s mass of C3H8 within ±0.5% of the amount of C3H8 that you expect to use. You may substitute a C3H8 analytical gas mixture (i.e., a prediluted tracer gas) for pure C3H8. This would be most appropriate for lower flow rates. The analytical gas mixture must meet the specifications in § 1065.750(a)(3).


(2) Select appropriate flow rates for the CVS and C3H8.


(3) Select a C3H8 injection port in the CVS. Select the port location to be as close as practical to the location where you introduce engine exhaust into the CVS, or at some point in the laboratory exhaust tubing upstream of this location. Connect the C3H8 cylinder to the injection system.


(4) Operate and stabilize the CVS.


(5) Preheat or pre-cool any heat exchangers in the sampling system.


(6) Allow heated and cooled components such as sample lines, filters, chillers, and pumps to stabilize at operating temperature.


(7) You may purge the HC sampling system during stabilization.


(8) If applicable, perform a vacuum side leak verification of the HC sampling system as described in § 1065.345.


(9) You may also conduct any other calibrations or verifications on equipment or analyzers.


(c) If you performed the vacuum-side leak verification of the HC sampling system as described in paragraph (b)(8) of this section, you may use the HC contamination procedure in § 1065.520(f) to verify HC contamination. Otherwise, zero, span, and verify contamination of the HC sampling system, as follows:


(1) Select the lowest HC analyzer range that can measure the C3H8 concentration expected for the CVS and C3H8 flow rates.


(2) Zero the HC analyzer using zero air introduced at the analyzer port.


(3) Span the HC analyzer using C3H8 span gas introduced at the analyzer port.


(4) Overflow zero air at the HC probe inlet or into a tee near the outlet of the probe.


(5) Measure the stable HC concentration of the HC sampling system as overflow zero air flows. For batch HC measurement, fill the batch container (such as a bag) and measure the HC overflow concentration.


(6) If the overflow HC concentration exceeds 2 µmol/mol, do not proceed until contamination is eliminated. Determine the source of the contamination and take corrective action, such as cleaning the system or replacing contaminated portions.


(7) When the overflow HC concentration does not exceed 2 µmol/mol, record this value as xTHCinit and use it to correct for HC contamination as described in § 1065.660.


(d) Perform the propane check as follows:


(1) For batch HC sampling, connect clean storage media, such as evacuated bags.


(2) Operate HC measurement instruments according to the instrument manufacturer’s instructions.


(3) If you will correct for dilution air background concentrations of HC, measure and record background HC in the dilution air.


(4) Zero any integrating devices.


(5) Begin sampling, and start any flow integrators.


(6) Release the contents of the C3H8 reference cylinder at the rate you selected. If you use a reference flow rate of C3H8, start integrating this flow rate.


(7) Continue to release the cylinder’s contents until at least enough C3H8 has been released to ensure accurate quantification of the reference C3H8 and the measured C3H8.


(8) Shut off the C3H8 reference cylinder and continue sampling until you have accounted for time delays due to sample transport and analyzer response.


(9) Stop sampling and stop any integrators.


(e) Perform post-test procedure as follows:


(1) If you used batch sampling, analyze batch samples as soon as practical.


(2) After analyzing HC, correct for contamination and background.


(3) Calculate total C3H8 mass based on your CVS and HC data as described in § 1065.650 (40 CFR 1066.605 for vehicle testing) and § 1065.660, using the molar mass of C3H8, MC3H8, instead the effective molar mass of HC, MHC.


(4) If you use a reference mass, determine the cylinder’s propane mass within ±0.5% and determine the C3H8 reference mass by subtracting the empty cylinder propane mass from the full cylinder propane mass.


(5) Subtract the reference C3H8 mass from the calculated mass. If this difference is within ±2% of the reference mass, the CVS passes this verification. If not, take corrective action as described in paragraph (f) of this section.


(f) A failed propane check might indicate one or more problems requiring corrective action, as follows:


Table 1 of § 1065.341 – Troubleshooting Guide for Propane Checks

Problem
Recommended corrective action
Incorrect analyzer calibrationRecalibrate, repair, or replace the FID analyzer.
LeaksInspect CVS tunnel, connections, fasteners, and HC sampling system. Repair or replace components.
Poor mixingPerform the verification as described in this section while traversing a sampling probe across the tunnel’s diameter, vertically and horizontally. If the analyzer response indicates any deviation exceeding ±2% of the mean measured concentration, consider operating the CVS at a higher flow rate or installing a mixing plate or orifice to improve mixing.
Hydrocarbon contamination in the sample systemPerform the hydrocarbon-contamination verification as described in § 1065.520.
Change in CVS calibrationPerform a calibration of the CVS flow meter as described in § 1065.340.
Flow meter entrance effectsInspect the CVS tunnel to determine whether the entrance effects from the piping configuration upstream of the flow meter adversely affect the flow measurement.
Other problems with the CVS or sampling verification hardware or softwareInspect the CVS system and related verification hardware, and software for discrepancies.

(g) You may verify flow measurements in a PFD (usually dilution air and diluted exhaust streams) for determining the dilution ratio in the PFD using the following method:


(1) Configure the HC sampling system to extract a sample from the PFD’s diluted exhaust stream (such as near a PM filter). If the absolute pressure at this location is too low to extract an HC sample, you may sample HC from the PFD’s pump exhaust. Use caution when sampling from pump exhaust because an otherwise acceptable pump leak downstream of a PFD diluted exhaust flow meter will cause a false failure of the propane check.


(2) Perform the propane check described in paragraphs (b), (c), and (d) of this section, but sample HC from the PFD’s diluted exhaust stream. Inject the propane in the same exhaust stream that the PFD is sampling from (either CVS or raw exhaust stack).


(3) Calculate C3H8 mass, taking into account the dilution from the PFD.


(4) Subtract the reference C3H8 mass from the calculated mass. If this difference is within ±2% of the reference mass, all PFD flow measurements for determining PFD dilution ratio pass this verification. If not, take corrective action as described in paragraph (f) of this section. For PFDs sampling only for PM, the allowed difference is ±5%.


(h) Table 2 of § 1065.307 describes optional verification procedures you may perform instead of linearity verification for certain flow-measurement systems. Performing carbon balance error verification also replaces any required propane checks.


[86 FR 34541, June 29, 2021]


§ 1065.342 Sample dryer verification.

(a) Scope and frequency. If you use a sample dryer as allowed in § 1065.145(e)(2) to remove water from the sample gas, verify the performance upon installation, after major maintenance, for thermal chiller. For osmotic membrane dryers, verify the performance upon installation, after major maintenance, and within 35 days of testing.


(b) Measurement principles. Water can inhibit an analyzer’s ability to properly measure the exhaust component of interest and thus is sometimes removed before the sample gas reaches the analyzer. For example water can negatively interfere with a CLD’s NOX response through collisional quenching and can positively interfere with an NDIR analyzer by causing a response similar to CO.


(c) System requirements. The sample dryer must meet the specifications as determined in § 1065.145(e)(2) for dewpoint, Tdew, and absolute pressure, ptotal, downstream of the osmotic-membrane dryer or thermal chiller.


(d) Sample dryer verification procedure. Use the following method to determine sample dryer performance. Run this verification with the dryer and associated sampling system operating in the same manner you will use for emission testing (including operation of sample pumps). You may run this verification test on multiple sample dryers sharing the same sampling system at the same time. You may run this verification on the sample dryer alone, but you must use the maximum gas flow rate expected during testing. You may use good engineering judgment to develop a different protocol.


(1) Use PTFE or stainless steel tubing to make necessary connections.


(2) Humidify room air, purified N2, or purified air by bubbling it through distilled H2O in a sealed vessel or use a device that injects distilled H2O as vapor into a controlled gas flow to humidify the gas to the highest sample H2O content that you estimate during emission sampling.


(3) Introduce the humidified gas upstream of the sample dryer. You may disconnect the transfer line from the probe and introduce the humidified gas at the inlet of the transfer line of the sample system used during testing. You may use the sample pumps in the sample system to draw gas through the vessel.


(4) Maintain the sample lines, fittings, and valves from the location where the humidified gas water content is measured to the inlet of the sampling system at a temperature at least 5 °C above the local humidified gas dewpoint. For dryers used in NOX sample systems, verify the sample system components used in this verification prevent aqueous condensation as required in § 1065.145(d)(1)(i). We recommend that the sample system components be maintained at least 5 °C above the local humidified gas dewpoint to prevent aqueous condensation.


(5) Measure the humidified gas dewpoint, Tdew, and absolute pressure, ptotal, as close as possible to the inlet of the sample dryer or inlet of the sample system to verify the water content is at least as high as the highest value that you estimated during emission sampling. You may verify the water content based on any humidity parameter (e.g. mole fraction water, local dewpoint, or absolute humidity).


(6) Measure the humidified gas dewpoint, Tdew, and absolute pressure, ptotal, as close as possible to the outlet of the sample dryer. Note that the dewpoint changes with absolute pressure. If the dewpoint at the sample dryer outlet is measured at a different pressure, then this reading must be corrected to the dewpoint at the sample dryer absolute pressure, ptotal.


(7) The sample dryer meets the verification if the dewpoint at the sample dryer pressure as measured in paragraph (d)(6) of this section is less than the dewpoint corresponding to the sample dryer specifications as determined in § 1065.145(e)(2) plus 2 °C or if the mole fraction of water as measured in (d)(6) is less than the corresponding sample dryer specifications plus 0.002 mol/mol.


(e) Alternate sample dryer verification procedure. The following method may be used in place of the sample dryer verification procedure in (d) of this section. If you use a humidity sensor for continuous monitoring of dewpoint at the sample dryer outlet you may skip the performance check in § 1065.342(d), but you must make sure that the dryer outlet humidity is at or below the minimum value used for quench, interference, and compensation checks.


[73 FR 37307, June 30, 2008, as amended at 73 FR 59328, Oct. 8, 2008; 75 FR 23040, Apr. 30, 2010; 86 FR 34543, June 29, 2021]


§ 1065.345 Vacuum-side leak verification.

(a) Scope and frequency. Verify that there are no significant vacuum-side leaks using one of the leak tests described in this section. For laboratory testing, perform the vacuum-side leak verification upon initial sampling system installation, within 8 hours before the start of the first test interval of each duty-cycle sequence, and after maintenance such as pre-filter changes. For field testing, perform the vacuum-side leak verification after each installation of the sampling system on the vehicle, prior to the start of the field test, and after maintenance such as pre-filter changes. This verification does not apply to any full-flow portion of a CVS dilution system.


(b) Measurement principles. A leak may be detected either by measuring a small amount of flow when there should be zero flow, or by detecting the dilution of a known concentration of span gas when it flows through the vacuum side of a sampling system.


(c) Low-flow leak test. Test a sampling system for low-flow leaks as follows:


(1) Seal the probe end of the system by taking one of the following steps:


(i) Cap or plug the end of the sample probe.


(ii) Disconnect the transfer line at the probe and cap or plug the transfer line.


(iii) Close a leak-tight valve located in the sample transfer line within 92 cm of the probe.


(2) Operate all vacuum pumps. After stabilizing, verify that the flow through the vacuum-side of the sampling system is less than 0.5% of the system’s normal in-use flow rate. You may estimate typical analyzer and bypass flows as an approximation of the system’s normal in-use flow rate.


(d) Dilution-of-span-gas leak test. You may use any gas analyzer for this test. If you use a FID for this test, correct for any HC contamination in the sampling system according to § 1065.660. To avoid misleading results from this test, we recommend using only analyzers that have a repeatability of 0.5% or better at the span gas concentration used for this test. Perform a vacuum-side leak test as follows:


(1) Prepare a gas analyzer as you would for emission testing.


(2) Supply span gas to the analyzer span port and record the measured value.


(3) Route overflow span gas to the inlet of the sample probe or at a tee fitting in the transfer line near the exit of the probe. You may use a valve upstream of the overflow fitting to prevent overflow of span gas out of the inlet of the probe, but you must then provide an overflow vent in the overflow supply line.


(4) Verify that the measured overflow span gas concentration is within ±0.5% of the concentration measured in paragraph (d)(2) of this section. A measured value lower than expected indicates a leak, but a value higher than expected may indicate a problem with the span gas or the analyzer itself. A measured value higher than expected does not indicate a leak.


(e) Vacuum-decay leak test. To perform this test you must apply a vacuum to the vacuum-side volume of your sampling system and then observe the leak rate of your system as a decay in the applied vacuum. To perform this test you must know the vacuum-side volume of your sampling system to within ±10% of its true volume. For this test you must also use measurement instruments that meet the specifications of subpart C of this part and of this subpart D. Perform a vacuum-decay leak test as follows:


(1) Seal the probe end of the system as close to the probe opening as possible by taking one of the following steps:


(i) Cap or plug the end of the sample probe.


(ii) Disconnect the transfer line at the probe and cap or plug the transfer line.


(iii) Close a leak-tight valve located in the sample transfer line within 92 cm of the probe.


(2) Operate all vacuum pumps. Draw a vacuum that is representative of normal operating conditions. In the case of sample bags, we recommend that you repeat your normal sample bag pump-down procedure twice to minimize any trapped volumes.


(3) Turn off the sample pumps and seal the system. Measure and record the absolute pressure of the trapped gas and optionally the system absolute temperature. Wait long enough for any transients to settle and long enough for a leak at 0.5% to have caused a pressure change of at least 10 times the resolution of the pressure transducer, then again record the pressure and optionally temperature.


(4) Calculate the leak flow rate based on an assumed value of zero for pumped-down bag volumes and based on known values for the sample system volume, the initial and final pressures, optional temperatures, and elapsed time. Using the calculations specified in § 1065.644, verify that the vacuum-decay leak flow rate is less than 0.5% of the system’s normal in-use flow rate.


[73 FR 37307, June 30, 2008, as amended at 73 FR 59328, Oct. 8, 2008; 75 FR 23040, Apr. 30, 2010; 81 FR 74167, Oct. 25, 2016]


CO and CO2 Measurements

§ 1065.350 H2O interference verification for CO2 NDIR analyzers.

(a) Scope and frequency. If you measure CO2 using an NDIR analyzer, verify the amount of H2O interference after initial analyzer installation and after major maintenance.


(b) Measurement principles. H2O can interfere with an NDIR analyzer’s response to CO2.


If the NDIR analyzer uses compensation algorithms that utilize measurements of other gases to meet this interference verification, simultaneously conduct these other measurements to test the compensation algorithms during the analyzer interference verification.


(c) System requirements. A CO2 NDIR analyzer must have an H2O interference that is within (0.0 ±0.4) mmol/mol, though we strongly recommend a lower interference that is within (0.0 ±0.2) mmol/mol.


(d) Procedure. Perform the interference verification as follows:


(1) Start, operate, zero, and span the CO2 NDIR analyzer as you would before an emission test. If the sample is passed through a dryer during emission testing, you may run this verification test with the dryer if it meets the requirements of § 1065.342. Operate the dryer at the same conditions as you will for an emission test. You may also run this verification test without the sample dryer.


(2) Create a humidified test gas by bubbling zero gas that meets the specifications in § 1065.750 through distilled H2O in a sealed vessel or use a device that introduces distilled H2O as vapor into a controlled gas flow. If the sample does not pass through a dryer during emission testing, humidify your test gas to an H2O level at or above the maximum expected during emission testing. If the sample passes through a dryer during emission testing, you must humidify your test gas to an H2O level at or above the level determined in § 1065.145(e)(2) for that dryer.


(3) Introduce the humidified test gas into the sample system. You may introduce it downstream of any sample dryer, if one is used during testing.


(4) If the sample is not passed through a dryer during this verification test, measure the H2O mole fraction, xH2O, of the humidified test gas, as close as possible to the inlet of the analyzer. For example, measure dewpoint, Tdew, and absolute pressure, ptotal, to calculate xH2O. Verify that the H2O content meets the requirement in paragraph (d)(2) of this section. If the sample is passed through a dryer during this verification test, you must verify that the H2O content of the humidified test gas downstream of the vessel meets the requirement in paragraph (d)(2) of this section based on either direct measurement of the H2O content (e.g., dewpoint and pressure) or an estimate based on the vessel pressure and temperature. Use good engineering judgment to estimate the H2O content. For example, you may use previous direct measurements of H2O content to verify the vessel’s level of saturation.


(5) If a sample dryer is not used in this verification test, use good engineering judgment to prevent condensation in the transfer lines, fittings, or valves from the point where xH2O is measured to the analyzer. We recommend that you design your system so the wall temperatures in the transfer lines, fittings, and valves from the point where xH2O is measured to the analyzer are at least 5 °C above the local sample gas dewpoint.


(6) Allow time for the analyzer response to stabilize. Stabilization time may include time to purge the transfer line and to account for analyzer response.


(7) While the analyzer measures the sample’s concentration, record 30 seconds of sampled data. Calculate the arithmetic mean of this data. The analyzer meets the interference verification if this value is within (0.0 ±0.4) mmol/mol.


(e) Exceptions. The following exceptions apply:


(1) You may omit this verification if you can show by engineering analysis that for your CO2 sampling system and your emission-calculation procedures, the H2O interference for your CO2 NDIR analyzer always affects your brake-specific emission results within ±0.5% of each of the applicable standards. This specification also applies for vehicle testing, except that it relates to emission results in g/mile or g/kilometer.


(2) You may use a CO2 NDIR analyzer that you determine does not meet this verification, as long as you try to correct the problem and the measurement deficiency does not adversely affect your ability to show that engines comply with all applicable emission standards.


[70 FR 40516, July 13, 2005, as amended at 73 FR 37308, June 30, 2008; 73 FR 59328, Oct. 8, 2008; 75 FR 23040, Apr. 30, 2010; 76 FR 57447, Sept. 15, 2011; 79 FR 23768, Apr. 28, 2014; 86 FR 34543, June 29, 2021]


§ 1065.355 H2O and CO2 interference verification for CO NDIR analyzers.

(a) Scope and frequency. If you measure CO using an NDIR analyzer, verify the amount of H2O and CO2 interference after initial analyzer installation and after major maintenance.


(b) Measurement principles. H2O and CO2 can positively interfere with an NDIR analyzer by causing a response similar to CO. If the NDIR analyzer uses compensation algorithms that utilize measurements of other gases to meet this interference verification, simultaneously conduct these other measurements to test the compensation algorithms during the analyzer interference verification.


(c) System requirements. A CO NDIR analyzer must have combined H2O and CO2 interference that is within ±2 % of the flow-weighted mean concentration of CO expected at the standard, though we strongly recommend a lower interference that is within ±1%.


(d) Procedure. Perform the interference verification as follows:


(1) Start, operate, zero, and span the CO NDIR analyzer as you would before an emission test. If the sample is passed through a dryer during emission testing, you may run this verification test with the dryer if it meets the requirements of § 1065.342. Operate the dryer at the same conditions as you will for an emission test. You may also run this verification test without the sample dryer.


(2) Create a humidified CO2 test gas by bubbling a CO2 span gas that meets the specifications in § 1065.750 through distilled H2O in a sealed vessel or use a device that introduces distilled H2O as vapor into a controlled gas flow. If the sample does not pass through a dryer during emission testing, humidify your test gas to an H2O level at or above the maximum expected during emission testing. If the sample passes through a dryer during emission testing, you must humidify your test gas to an H2O at or above the level determined in § 1065.145(e)(2) for that dryer. Use a CO2 span gas concentration at least as high as the maximum expected during testing.


(3) Introduce the humidified CO2 test gas into the sample system. You may introduce it downstream of any sample dryer, if one is used during testing.


(4) If the sample is not passed through a dryer during this verification test, measure the H2O mole fraction, xH2O, of the humidified CO2 test gas as close as possible to the inlet of the analyzer. For example, measure dewpoint, Tdew, and absolute pressure, ptotal, to calculate xH2O. Verify that the H2O content meets the requirement in paragraph (d)(2) of this section. If the sample is passed through a dryer during this verification test, you must verify that the H2O content of the humidified test gas downstream of the vessel meets the requirement in paragraph (d)(2) of this section based on either direct measurement of the H2O content (e.g., dewpoint and pressure) or an estimate based on the vessel pressure and temperature. Use good engineering judgment to estimate the H2O content. For example, you may use previous direct measurements of H2O content to verify the vessel’s level of saturation.


(5) If a sample dryer is not used in this verification test, use good engineering judgment to prevent condensation in the transfer lines, fittings, or valves from the point where xH2O is measured to the analyzer. We recommend that you design your system so that the wall temperatures in the transfer lines, fittings, and valves from the point where xH2O is measured to the analyzer are at least 5 °C above the local sample gas dewpoint.


(6) Allow time for the analyzer response to stabilize. Stabilization time may include time to purge the transfer line and to account for analyzer response.


(7) While the analyzer measures the sample’s concentration, record its output for 30 seconds. Calculate the arithmetic mean of this data.


(8) The analyzer meets the interference verification if the result of paragraph (d)(7) of this section meets the tolerance in paragraph (c) of this section.


(9) You may also run interference procedures for CO2 and H2O separately. If the CO2 and H2O levels used are higher than the maximum levels expected during testing, you may scale down each observed interference value by multiplying the observed interference by the ratio of the maximum expected concentration value to the actual value used during this procedure. You may run separate interference concentrations of H2O (down to 0.025 mol/mol H2O content) that are lower than the maximum levels expected during testing, but you must scale up the observed H2O interference by multiplying the observed interference by the ratio of the maximum expected H2O concentration value to the actual value used during this procedure. The sum of the two scaled interference values must meet the tolerance in paragraph (c) of this section.


(e) Exceptions. The following exceptions apply:


(1) You may omit this verification if you can show by engineering analysis that for your CO sampling system and your emission-calculation procedures, the combined CO2 and H2O interference for your CO NDIR analyzer always affects your brake-specific CO emission results within ±0.5% of the applicable CO standard.


(2) You may use a CO NDIR analyzer that you determine does not meet this verification, as long as you try to correct the problem and the measurement deficiency does not adversely affect your ability to show that engines comply with all applicable emission standards.


[70 FR 40516, July 13, 2005, as amended at 73 FR 37308, June 30, 2008; 73 FR 59328, Oct. 8, 2008; 75 FR 23041, Apr. 30, 2010; 79 FR 23769, Apr. 28, 2014; 86 FR 34543, June 29, 2021]


Hydrocarbon Measurements

§ 1065.360 FID optimization and verification.

(a) Scope and frequency. For all FID analyzers, calibrate the FID upon initial installation. Repeat the calibration as needed using good engineering judgment. For a FID that measures THC, perform the following steps:


(1) Optimize the response to various hydrocarbons after initial analyzer installation and after major maintenance as described in paragraph (c) of this section.


(2) Determine the methane (CH4) response factor after initial analyzer installation and after major maintenance as described in paragraph (d) of this section.


(3) If you determine NMNEHC by subtracting from measured THC, determine the ethane (C2H6) response factor after initial analyzer installation and after major maintenance as described in paragraph (f) of this section. Verify the C2H6 response within 185 days before testing as described in paragraph (f) of this section.


(4) For any gaseous-fueled engine, including dual-fuel and flexible-fuel engines, you may determine the methane (CH4) and ethane (C2H6) response factors as a function of the molar water concentration in the raw or diluted exhaust. If you choose the option in this paragraph (a)(4), generate and verify the humidity level (or fraction) as described in § 1065.365(d)(11).


(b) Calibration. Use good engineering judgment to develop a calibration procedure, such as one based on the FID-analyzer manufacturer’s instructions and recommended frequency for calibrating the FID. Alternately, you may remove system components for off-site calibration. For a FID that measures THC, calibrate using C3H8 calibration gases that meet the specifications of § 1065.750. For a FID that measures CH4, calibrate using CH4 calibration gases that meet the specifications of § 1065.750. We recommend FID analyzer zero and span gases that contain approximately the flow-weighted mean concentration of O2 expected during testing. If you use a FID to measure CH4 downstream of a nonmethane cutter, you may calibrate that FID using CH4 calibration gases with the cutter. Regardless of the calibration gas composition, calibrate on a carbon number basis of one (C1). For example, if you use a C3H8 span gas of concentration 200 µmol/mol, span the FID to respond with a value of 600 µmol/mol. As another example, if you use a CH4 span gas with a concentration of 200 µmol/mol, span the FID to respond with a value of 200 µmol/mol.


(c) THC FID response optimization. This procedure is only for FID analyzers that measure THC. Use good engineering judgment for initial instrument start-up and basic operating adjustment using FID fuel and zero air. Heated FIDs must be within their required operating temperature ranges. Optimize FID response at the most common analyzer range expected during emission testing. Optimization involves adjusting flows and pressures of FID fuel, burner air, and sample to minimize response variations to various hydrocarbon species in the exhaust. Use good engineering judgment to trade off peak FID response to propane calibration gases to achieve minimal response variations to different hydrocarbon species. For an example of trading off response to propane for relative responses to other hydrocarbon species, see SAE 770141 (incorporated by reference in § 1065.1010). Determine the optimum flow rates and/or pressures for FID fuel, burner air, and sample and record them for future reference.


(d) THC FID CH4 response factor determination. This procedure is only for FID analyzers that measure THC. Since FID analyzers generally have a different response to CH4 versus C3H8, determine the THC-FID analyzer’s CH4 response factor, RFCH4[THC-FID], after FID optimization. Use the most recent RFCH4[THC-FID] measured according to this section in the calculations for HC determination described in § 1065.660 to compensate for CH4 response. Determine RFCH4[THC-FID] as follows, noting that you do not determine RFCH4[THC-FID] for FIDs that are calibrated and spanned using CH4 with a nonmethane cutter:


(1) Select a C3 H8 span gas concentration that you use to span your analyzers before emission testing. Use only span gases that meet the specifications of § 1065.750. Record the C3H8 concentration of the gas.


(2) Select a CH4 span gas concentration that you use to span your analyzers before emission testing. Use only span gases that meet the specifications of § 1065.750. Record the CH4 concentration of the gas.


(3) Start and operate the FID analyzer according to the manufacturer’s instructions.


(4) Confirm that the FID analyzer has been calibrated using C3H8. Calibrate on a carbon number basis of one (C1). For example, if you use a C3 H8 span gas of concentration 200 µmol/mol, span the FID to respond with a value of 600 µmol/mol.


(5) Zero the FID with a zero gas that you use for emission testing.


(6) Span the FID with the C3H8 span gas that you selected under paragraph (d)(1) of this section.


(7) Introduce the CH4 span gas that you selected under paragraph (d)(2) of this section into the FID analyzer.


(8) Allow time for the analyzer response to stabilize. Stabilization time may include time to purge the analyzer and to account for its response.


(9) While the analyzer measures the CH4 concentration, record 30 seconds of sampled data. Calculate the arithmetic mean of these values.


(10) For analyzers with multiple ranges, you need to perform the procedure in this paragraph (d) only on a single range.


(11) Divide the mean measured concentration by the recorded span concentration of the CH4 calibration gas. The result is the FID analyzer’s response factor for CH4, RF CH4[THC-FID].


(12) Determine the response factor as a function of molar water concentration and use this response factor to account for the CH4 response for NMHC determination described in § 1065.660(b)(2)(iii). Humidify the CH4 span gas as described in § 1065.365(d)(11) and repeat the steps in paragraphs (d)(7) through (9) of this section until measurements are complete for each setpoint in the selected range. Divide each mean measured CH4 concentration by the recorded span concentration of the CH4 calibration gas, adjusted for water content, to determine the FID analyzer’s CH4 response factor, RFCH4[THC-FID]. Use the CH4 response factors at the different setpoints to create a functional relationship between response factor and molar water concentration, downstream of the last sample dryer if any sample dryers are present. Use this functional relationship to determine the response factor during an emission test.


(e) THC FID CH4 response verification. This procedure is only for FID analyzers that measure THC. Verify RFCH4[THC-FID] as follows:


(1) Perform a CH4 response factor determination as described in paragraph (d) of this section. If the resulting value of RFCH4[THC-FID] is within ±5% of its most recent previously determined value, the THC FID passes the CH4 response verification. For example, if the most recent previous value for RF CH4[THC-FID] was 1.05 and it increased by 0.05 to become 1.10 or it decreased by 0.05 to become 1.00, either case would be acceptable because ±4.8% is less than ±5%.


(2) If RF CH4[THC-FID] is not within the tolerance specified in paragraph (e)(1) of this section, use good engineering judgment to verify that the flow rates and/or pressures of FID fuel, burner air, and sample are at their most recent previously recorded values, as determined in paragraph (c) of this section. You may adjust these flow rates as necessary. Then determine the RF CH4[THC-FID] as described in paragraph (d) of this section and verify that it is within the tolerance specified in this paragraph (e).


(3) If RF CH4[THC-FID] is not within the tolerance specified in this paragraph (e), re-optimize the FID response as described in paragraph (c) of this section.


(4) Determine a new RFCH4[THC-FID] as described in paragraph (d) of this section. Use this new value of RF CH4[THC-FID] in the calculations for HC determination, as described in § 1065.660.


(5) For analyzers with multiple ranges, you need to perform the procedure in this paragraph (e) only on a single range.


(f) THC FID C2H6 response factor determination. This procedure is only for FID analyzers that measure THC. Since FID analyzers generally have a different response to C2H6 than C3H8, determine the THC-FID analyzer’s C2H6 response factor, RFC2H6[THC-FID], after FID optimization using the procedure described in paragraph (d) of this section, replacing CH4 with C2H6. Use the most recent RFC2H6[THC-FID] measured according to this section in the calculations for HC determination described in § 1065.660 to compensate for C2H6 response.


[73 FR 37308, June 30, 2008, as amended at 75 FR 23041, Apr. 30, 2010; 76 FR 57447, Sept. 15, 2011; 79 FR 23769, Apr. 28, 2014; 81 FR 74168, Oct. 25, 2016; 86 FR 34543, June 29, 2021]


§ 1065.362 Non-stoichiometric raw exhaust FID O2 interference verification.

(a) Scope and frequency. If you use FID analyzers for raw exhaust measurements from engines that operate in a non-stoichiometric mode of combustion (e.g., compression-ignition, lean-burn), verify the amount of FID O2 interference upon initial installation and after major maintenance.


(b) Measurement principles. Changes in O2 concentration in raw exhaust can affect FID response by changing FID flame temperature. Optimize FID fuel, burner air, and sample flow to meet this verification. Verify FID performance with the compensation algorithms for FID O2 interference that you have active during an emission test.


(c) System requirements. Any FID analyzer used during testing must meet the FID O2 interference verification according to the procedure in this section.


(d) Procedure. Determine FID O2 interference as follows, noting that you may use one or more gas dividers to create the reference gas concentrations that are required to perform this verification:


(1) Select three span reference gases that contain a C3H8 concentration that you use to span your analyzers before emission testing. Use only span gases that meet the specifications of § 1065.750. You may use CH4 span reference gases for FIDs calibrated on CH4 with a nonmethane cutter. Select the three balance gas concentrations such that the concentrations of O2 and N2 represent the minimum, maximum, and average O2 concentrations expected during testing. The requirement for using the average O2 concentration can be removed if you choose to calibrate the FID with span gas balanced with the average expected oxygen concentration.


(2) Confirm that the FID analyzer meets all the specifications of § 1065.360.


(3) Start and operate the FID analyzer as you would before an emission test. Regardless of the FID burner’s air source during testing, use zero air as the FID burner’s air source for this verification.


(4) Zero the FID analyzer using the zero gas used during emission testing.


(5) Span the FID analyzer using a span gas that you use during emission testing.


(6) Check the zero response of the FID analyzer using the zero gas used during emission testing. If the mean zero response of 30 seconds of sampled data is within ±0.5% of the span reference value used in paragraph (d)(5) of this section, then proceed to the next step; otherwise restart the procedure at paragraph (d)(4) of this section.


(7) Check the analyzer response using the span gas that has the minimum concentration of O2 expected during testing. Record the mean response of 30 seconds of stabilized sample data as xO2minHC.


(8) Check the zero response of the FID analyzer using the zero gas used during emission testing. If the mean zero response of 30 seconds of stabilized sample data is within ±0.5% of the span reference value used in paragraph (d)(5) of this section, then proceed to the next step; otherwise restart the procedure at paragraph (d)(4) of this section.


(9) Check the analyzer response using the span gas that has the average concentration of O2 expected during testing. Record the mean response of 30 seconds of stabilized sample data as xO2avgHC.


(10) Check the zero response of the FID analyzer using the zero gas used during emission testing. If the mean zero response of 30 seconds of stabilized sample data is within ±0.5% of the span reference value used in paragraph (d)(5) of this section, proceed to the next step; otherwise restart the procedure at paragraph (d)(4) of this section.


(11) Check the analyzer response using the span gas that has the maximum concentration of O2 expected during testing. Record the mean response of 30 seconds of stabilized sample data as xO2maxHC.


(12) Check the zero response of the FID analyzer using the zero gas used during emission testing. If the mean zero response of 30 seconds of stabilized sample data is within ±0.5% of the span reference value used in paragraph (d)(5) of this section, then proceed to the next step; otherwise restart the procedure at paragraph (d)(4) of this section.


(13) Calculate the percent difference between xO2maxHC and its reference gas concentration. Calculate the percent difference between xO2avgHC and its reference gas concentration. Calculate the percent difference between xO2minHC and its reference gas concentration. Determine the maximum percent difference of the three. This is the O2 interference.


(14) If the O2 interference is within ±2%, the FID passes the O2 interference verification; otherwise perform one or more of the following to address the deficiency:


(i) Repeat the verification to determine if a mistake was made during the procedure.


(ii) Select zero and span gases for emission testing that contain higher or lower O2 concentrations and repeat the verification.


(iii) Adjust FID burner air, fuel, and sample flow rates. Note that if you adjust these flow rates on a THC FID to meet the O2 interference verification, you have reset RFCH4 for the next RFCH4 verification according to § 1065.360. Repeat the O2 interference verification after adjustment and determine RFCH4.


(iv) Repair or replace the FID and repeat the O2 interference verification.


(v) Demonstrate that the deficiency does not adversely affect your ability to demonstrate compliance with the applicable emission standards.


(15) For analyzers with multiple ranges, you need to perform the procedure in this paragraph (d) only on a single range.


[70 FR 40516, July 13, 2005, as amended at 73 FR 37309, June 30, 2008; 79 FR 23770, Apr. 28, 2014]


§ 1065.365 Nonmethane cutter penetration fractions.

(a) Scope and frequency. If you use a FID analyzer and a nonmethane cutter (NMC) to measure methane (CH4), determine the nonmethane cutter’s penetration fractions of methane, PFCH4, and ethane, PFC2H6. As detailed in this section, these penetration fractions may be determined as a combination of NMC penetration fractions and FID analyzer response factors, depending on your particular NMC and FID analyzer configuration. Perform this verification after installing the nonmethane cutter. Repeat this verification within 185 days of testing to verify that the catalytic activity of the cutter has not deteriorated. Note that because nonmethane cutters can deteriorate rapidly and without warning if they are operated outside of certain ranges of gas concentrations and outside of certain temperature ranges, good engineering judgment may dictate that you determine a nonmethane cutter’s penetration fractions more frequently.


(b) Measurement principles. A nonmethane cutter is a heated catalyst that removes nonmethane hydrocarbons from an exhaust sample stream before the FID analyzer measures the remaining hydrocarbon concentration. An ideal nonmethane cutter would have a CH4 penetration fraction, PFCH4, of 1.000, and the penetration fraction for all other nonmethane hydrocarbons would be 0.000, as represented by PFC2H6. The emission calculations in § 1065.660 use the measured values from this verification to account for less than ideal NMC performance.


(c) System requirements. We do not limit NMC penetration fractions to a certain range. However, we recommend that you optimize a nonmethane cutter by adjusting its temperature to achieve a PFCH4 >0.85 and a PFC2H6

(d) Procedure for a FID calibrated with the NMC. The method described in this paragraph (d) is recommended over the procedures specified in paragraphs (e) and (f) of this section and required for any gaseous-fueled engine, including dual-fuel and flexible-fuel engines. If your FID arrangement is such that a FID is always calibrated to measure CH4 with the NMC, then span that FID with the NMC using a CH4 span gas, set the product of that FID’s CH4 response factor and CH4 penetration fraction, RFPFCH4[NMC-FID], equal to 1.0 for all emission calculations, and determine its combined C2H6 response factor and C2H6 penetration fraction, RFPFC2H6[NMC-FID], as follows. For any gaseous-fueled engine, including dual-fuel and flexible-fuel engines, you must determine the CH4 penetration fraction, PFCH4[NMC-FID], and C2H6 response factor and C2H6 penetration fraction, RFPFC2H6[NMC-FID], as a function of the molar water concentration in the raw or diluted exhaust as described in paragraphs (d)(10) and (12) of this section. Generate and verify the humidity generation as described in paragraph (d)(11) of this section. When using the option in this paragraph (d), note that the FID’s CH4 penetration fraction, PFCH4[NMC-FID], is set equal to 1.0 only for 0% molar water concentration. You are not required to meet the recommended lower limit for PFCH4 of greater than 0.85 for any of the penetration fractions generated as a function of molar water concentration.


(1) Select CH4 and C2H6 analytical gas mixtures and ensure that both mixtures meet the specifications of § 1065.750. Select a CH4 concentration that you would use for spanning the FID during emission testing and select a C2H6 concentration that is typical of the peak NMHC concentration expected at the hydrocarbon standard or equal to the THC analyzer’s span value. For CH4 analyzers with multiple ranges, perform this procedure on the highest range used for emission testing.


(2) Start, operate, and optimize the nonmethane cutter according to the manufacturer’s instructions, including any temperature optimization.


(3) Confirm that the FID analyzer meets all the specifications of § 1065.360.


(4) Start and operate the FID analyzer according to the manufacturer’s instructions.


(5) Zero and span the FID with the nonmethane cutter as you would during emission testing. Span the FID through the cutter by using CH4 span gas.


(6) Introduce the C2H6 analytical gas mixture upstream of the nonmethane cutter. Use good engineering judgment to address the effect of hydrocarbon contamination if your point of introduction is vastly different from the point of zero/span gas introduction.


(7) Allow time for the analyzer response to stabilize. Stabilization time may include time to purge the nonmethane cutter and to account for the analyzer’s response.


(8) While the analyzer measures a stable concentration, record 30 seconds of sampled data. Calculate the arithmetic mean of these data points.


(9) Divide the mean C2H6 concentration by the reference concentration of C2H6, converted to a C1 basis. The result is the C2H6 combined response factor and penetration fraction, RFPFC2H6[NMC-FID]. Use this combined C2H6 response factor and C2H6 penetration fraction and the product of the CH4 response factor and CH4 penetration fraction, RFPFCH4[NMC-FID], set to 1.0 in emission calculations according to § 1065.660(b)(2)(i) or (d)(1)(i) or § 1065.665, as applicable.


(10) Determine the combined C2H6 response factor and C2H6 penetration fraction as a function of molar water concentration and use it to account for C2H6 response factor and C2H6 penetration fraction for NMHC determination as described in § 1065.660(b)(2)(iii) and for CH4 determination in § 1065.660(d)(1)(iii). Humidify the C2H6 analytical gas mixture as described in paragraph (d)(11) of this section. Repeat the steps in paragraphs (d)(6) through (8) of this section until measurements are complete for each setpoint in the selected range. Divide each mean measured C2H6 concentration by the reference concentration of C2H6, converted to a C1-basis and adjusted for water content to determine the FID analyzer’s combined C2H6 response factor and C2H6 penetration fraction, RFPFC2H6[NMC-FID]. Use RFPFC2H6[NMC-FID] at the different setpoints to create a functional relationship between the combined response factor and penetration fraction and molar water concentration, downstream of the last sample dryer if any sample dryers are present. Use this functional relationship to determine the combined response factor and penetration fraction during the emission test.


(11) Create a humidified test gas by bubbling the analytical gas mixture that meets the specifications in § 1065.750 through distilled H2O in a sealed vessel or use a device that introduces distilled H2O as vapor into a controlled gas flow. If the sample does not pass through a dryer during emission testing, generate at least five different H2O concentrations that cover the range from less than the minimum expected to greater than the maximum expected water concentration during testing. Use good engineering judgment to determine the target concentrations. For analyzers where the sample passes through a dryer during emission testing, humidify your test gas to an H2O level at or above the level determined in § 1065.145(e)(2) for that dryer and determine a single wet analyzer response to the dehumidified sample. Heat all transfer lines from the water generation system to a temperature at least 5 °C higher than the highest dewpoint generated. Determine H2O concentration as an average value over intervals of at least 30 seconds. Monitor the humidified sample stream with a dewpoint analyzer, relative humidity sensor, FTIR, NDIR, or other water analyzer during each test or, if the humidity generator achieves humidity levels with controlled flow rates, validate the instrument within 370 days before testing and after major maintenance using one of the following methods:


(i) Determine the linearity of each flow metering device. Use one or more reference flow meters to measure the humidity generator’s flow rates and verify the H2O level value based on the humidity generator manufacturer’s recommendations and good engineering judgment. We recommend that you utilize at least 10 flow rates for each flow-metering device.


(ii) Perform validation testing based on monitoring the humidified stream with a dewpoint analyzer, relative humidity sensor, FTIR, NDIR, or other water analyzer as described in this paragraph (d)(11). Compare the measured humidity to the humidity generator’s value. Verify overall linearity performance for the generated humidity as described in § 1065.307 using the criteria for other dewpoint measurements or confirm all measured values are within ±2% of the target mole fraction. In the case of dry gas, the measured value may not exceed 0.002 mole fraction.


(iii) Follow the performance requirements in § 1065.307(b) if the humidity generator does not meet validation criteria.


(12) Determine the CH4 penetration fraction as a function of molar water concentration and use this penetration fraction for NMHC determination in § 1065.660(b)(2)(iii) and for CH4 determination in § 1065.660(d)(1)(iii). Repeat the steps in paragraphs (d)(6) through (11) of this section, but with the CH4 analytical gas mixture instead of C2H6. Use this functional relationship to determine the penetration fraction during the emission test.


(e) Procedure for a FID calibrated with propane, bypassing the NMC. If you use a single FID for THC and CH4 determination with an NMC that is calibrated with propane, C3H8, by bypassing the NMC, determine its penetration fractions, PFC2H6[NMC-FID] and PFCH4[NMC-FID], as follows:


(1) Select CH4 and C2H6 analytical gas mixtures and ensure that both mixtures meet the specifications of § 1065.750. Select a CH4 concentration that you would use for spanning the FID during emission testing and select a C2H6 concentration that is typical of the peak NMHC concentration expected at the hydrocarbon standard and the C2H6 concentration typical of the peak total hydrocarbon (THC) concentration expected at the hydrocarbon standard or equal to the THC analyzer’s span value. For CH4 analyzers with multiple ranges, perform this procedure on the highest range used for emission testing.


(2) Start and operate the nonmethane cutter according to the manufacturer’s instructions, including any temperature optimization.


(3) Confirm that the FID analyzer meets all the specifications of § 1065.360.


(4) Start and operate the FID analyzer according to the manufacturer’s instructions.


(5) Zero and span the FID as you would during emission testing. Span the FID by bypassing the cutter and by using C3H8 span gas.


(6) Introduce the C2H6 analytical gas mixture upstream of the nonmethane cutter. Use good engineering judgment to address the effect of hydrocarbon contamination if your point of introduction is vastly different from the point of zero/span gas introduction.


(7) Allow time for the analyzer response to stabilize. Stabilization time may include time to purge the nonmethane cutter and to account for the analyzer’s response.


(8) While the analyzer measures a stable concentration, record 30 seconds of sampled data. Calculate the arithmetic mean of these data points.


(9) Reroute the flow path to bypass the nonmethane cutter, introduce the C2H6 analytical gas mixture, and repeat the steps in paragraph (e)(7) through (e)(8) of this section.


(10) Divide the mean C2H6 concentration measured through the nonmethane cutter by the mean C2H6 concentration measured after bypassing the nonmethane cutter. The result is the C2H6 penetration fraction, PFC2H6[NMC-FID]. Use this penetration fraction according to § 1065.660(b)(2)(ii), § 1065.660(d)(1)(ii), or § 1065.665, as applicable.


(11) Repeat the steps in paragraphs (e)(6) through (e)(10) of this section, but with the CH4 analytical gas mixture instead of C2H6. The result will be the CH4 penetration fraction, PFCH4[NMC-FID]. Use this penetration fraction according to § 1065.660(b)(2)(ii), § 1065.660(c)(1)(ii), or § 1065.665, as applicable.


(f) Procedure for a FID calibrated with CH4, bypassing the NMC. If you use a FID with an NMC that is calibrated with CH4, by bypassing the NMC, determine its combined ethane (C2H6) response factor and penetration fraction, RFPFC2H6[NMC-FID], as well as its CH4 penetration fraction, PFCH4[NMC-FID], as follows:


(1) Select CH4 and C2H6 analytical gas mixtures and ensure that both mixtures meet the specifications of § 1065.750. Select a CH4 concentration that you would use for spanning the FID during emission testing and select a C2H6 concentration that is typical of the peak NMHC concentration expected at the hydrocarbon standard or equal to the THC analyzer’s span value. For CH4 analyzers with multiple ranges, perform this procedure on the highest range used for emission testing.


(2) Start and operate the nonmethane cutter according to the manufacturer’s instructions, including any temperature optimization.


(3) Confirm that the FID analyzer meets all the specifications of § 1065.360.


(4) Start and operate the FID analyzer according to the manufacturer’s instructions.


(5) Zero and span the FID as you would during emission testing. Span the FID by bypassing the cutter and by using CH4 span gas. Note that you must span the FID on a C1 basis. For example, if your span gas has a methane reference value of 100 µmol/mol, the correct FID response to that span gas is 100 µmol/mol because there is one carbon atom per CH4 molecule.


(6) Introduce the C2H6 analytical gas mixture upstream of the nonmethane cutter. Use good engineering judgment to address the effect of hydrocarbon contamination if your point of introduction is vastly different from the point of zero/span gas introduction.


(7) Allow time for the analyzer response to stabilize. Stabilization time may include time to purge the nonmethane cutter and to account for the analyzer’s response.


(8) While the analyzer measures a stable concentration, record 30 seconds of sampled data. Calculate the arithmetic mean of these data points.


(9) Divide the mean C2H6 concentration by the reference concentration of C2H6, converted to a C1 basis. The result is the combined C2H6 response factor and C2H6 penetration fraction, RFPFC2H6[NMC-FID]. Use this combined C2H6 response factor and C2H6 penetration fraction according to § 1065.660(b)(2)(iii) or (d)(1)(iii) or § 1065.665, as applicable.


(10) Introduce the CH4 analytical gas mixture upstream of the nonmethane cutter. Use good engineering judgment to address the effect of hydrocarbon contamination if your point of introduction is vastly different from the point of zero/span gas introduction.


(11) Allow time for the analyzer response to stabilize. Stabilization time may include time to purge the nonmethane cutter and to account for the analyzer’s response.


(12) While the analyzer measures a stable concentration, record 30 seconds of sampled data. Calculate the arithmetic mean of these data points.


(13) Reroute the flow path to bypass the nonmethane cutter, introduce the CH4 analytical gas mixture, and repeat the steps in paragraphs (e)(11) and (12) of this section.


(14) Divide the mean CH4 concentration measured through the nonmethane cutter by the mean CH4 concentration measured after bypassing the nonmethane cutter. The result is the CH4 penetration fraction, PFCH4[NMC-FID]. Use this CH4 penetration fraction according to § 1065.660(b)(2)(iii) or (d)(1)(iii) or § 1065.665, as applicable.


[73 FR 37310, June 30, 2008, as amended at 74 FR 56513, Oct. 30, 2009; 79 FR 23770, Apr. 28, 2014; 81 FR 74168, Oct. 25, 2016; 86 FR 34543, June 29, 2021]


§ 1065.366 Interference verification for FTIR analyzers.

(a) Scope and frequency. If you measure CH4, C2H6, NMHC, or NMNEHC using an FTIR analyzer, verify the amount of interference after initial analyzer installation and after major maintenance.


(b) Measurement principles. Interference gases can interfere with certain analyzers by causing a response similar to the target analyte. If the analyzer uses compensation algorithms that utilize measurements of other gases to meet this interference verification, simultaneously conduct these other measurements to test the compensation algorithms during the analyzer interference verification.


(c) System requirements. An FTIR analyzer must have combined interference that is within ±2% of the flow-weighted mean concentration of CH4, NMHC, or NMNEHC expected at the standard, though we strongly recommend a lower interference that is within ±1%.


(d) Procedure. Perform the interference verification for an FTIR analyzer using the same procedure that applies for N2O analyzers in § 1065.375(d).


[81 FR 74168, Oct. 25, 2016]


§ 1065.369 H2O, CO, and CO2 interference verification for photoacoustic alcohol analyzers.

(a) Scope and frequency. If you measure ethanol or methanol using a photoacoustic analyzer, verify the amount of H2O, CO, and CO2 interference after initial analyzer installation and after major maintenance.


(b) Measurement principles. H2O, CO, and CO2 can positively interfere with a photoacoustic analyzer by causing a response similar to ethanol or methanol. If the photoacoustic analyzer uses compensation algorithms that utilize measurements of other gases to meet this interference verification, simultaneously conduct these other measurements to test the compensation algorithms during the analyzer interference verification.


(c) System requirements. Photoacoustic analyzers must have combined interference that is within (0.0 ±0.5) µmol/mol. We strongly recommend a lower interference that is within (0.0 ±0.25) µmol/mol.


(d) Procedure. Perform the interference verification by following the procedure in § 1065.375(d), comparing the results to paragraph (c) of this section.


[79 FR 23770, Apr. 28, 2014]


NOX and N2O Measurements

§ 1065.370 CLD CO2 and H2O quench verification.

(a) Scope and frequency. If you use a CLD analyzer to measure NOX, verify the amount of H2O and CO2 quench after installing the CLD analyzer and after major maintenance.


(b) Measurement principles. H2O and CO2 can negatively interfere with a CLD’s NOX response by collisional quenching, which inhibits the chemiluminescent reaction that a CLD utilizes to detect NOX. This procedure and the calculations in § 1065.675 determine quench and scale the quench results to the maximum mole fraction of H2O and the maximum CO2 concentration expected during emission testing. If the CLD analyzer uses quench compensation algorithms that utilize H2O and/or CO2 measurement instruments, evaluate quench with these instruments active and evaluate quench with the compensation algorithms applied.


(c) System requirements. A CLD analyzer must have a combined H2O and CO2 quench of ±2% or less, though we strongly recommend a quench of ±1% or less. Combined quench is the sum of the CO2 quench determined as described in paragraph (d) of this section, plus the H2O quench determined in paragraph (e) of this section.


(d) CO2 quench verification procedure. Use the following method to determine CO2 quench by using a gas divider that blends binary span gases with zero gas as the diluent and meets the specifications in § 1065.248, or use good engineering judgment to develop a different protocol:


(1) Use PTFE or stainless steel tubing to make necessary connections.


(2) Configure the gas divider such that nearly equal amounts of the span and diluent gases are blended with each other.


(3) If the CLD analyzer has an operating mode in which it detects NO-only, as opposed to total NOX, operate the CLD analyzer in the NO-only operating mode.


(4) Use a CO2 span gas that meets the specifications of § 1065.750 and a concentration that is approximately twice the maximum CO2 concentration expected during emission testing.


(5) Use an NO span gas that meets the specifications of § 1065.750 and a concentration that is approximately twice the maximum NO concentration expected during emission testing.


(6) Zero and span the CLD analyzer. Span the CLD analyzer with the NO span gas from paragraph (d)(5) of this section through the gas divider. Connect the NO span gas to the span port of the gas divider; connect a zero gas to the diluent port of the gas divider; use the same nominal blend ratio selected in paragraph (d)(2) of this section; and use the gas divider’s output concentration of NO to span the CLD analyzer. Apply gas property corrections as necessary to ensure accurate gas division.


(7) Connect the CO2 span gas to the span port of the gas divider.


(8) Connect the NO span gas to the diluent port of the gas divider.


(9) While flowing NO and CO2 through the gas divider, stabilize the output of the gas divider. Determine the CO2 concentration from the gas divider output, applying gas property correction as necessary to ensure accurate gas division, or measure it using an NDIR. Record this concentration, xCO2act, and use it in the quench verification calculations in § 1065.675. Alternatively, you may use a simple gas blending device and use an NDIR to determine this CO2 concentration. If you use an NDIR, it must meet the requirements of this part for laboratory testing and you must span it with the CO2 span gas from paragraph (d)(4) of this section.


(10) Measure the NO concentration downstream of the gas divider with the CLD analyzer. Allow time for the analyzer response to stabilize. Stabilization time may include time to purge the transfer line and to account for analyzer response. While the analyzer measures the sample’s concentration, record the analyzer’s output for 30 seconds. Calculate the arithmetic mean concentration from these data, xNOmeas. Record xNOmeas, and use it in the quench verification calculations in § 1065.675.


(11) Calculate the actual NO concentration at the gas divider’s outlet, xNOact, based on the span gas concentrations and xCO2act according to Eq. 1065.675-2. Use the calculated value in the quench verification calculations in Eq. 1065.675-1.


(12) Use the values recorded according to this paragraph (d) and paragraph (e) of this section to calculate quench as described in § 1065.675.


(e) H2O quench verification procedure. Use the following method to determine H2O quench, or use good engineering judgment to develop a different protocol:


(1) Use PTFE or stainless steel tubing to make necessary connections.


(2) If the CLD analyzer has an operating mode in which it detects NO-only, as opposed to total NOX, operate the CLD analyzer in the NO-only operating mode.


(3) Use an NO span gas that meets the specifications of § 1065.750 and a concentration that is near the maximum concentration expected during emission testing.


(4) Zero and span the CLD analyzer. Span the CLD analyzer with the NO span gas from paragraph (e)(3) of this section, record the span gas concentration as xNOdry, and use it in the quench verification calculations in § 1065.675.


(5) Create a humidified NO span gas by bubbling a NO gas that meets the specifications in § 1065.750 through distilled H2O in a sealed vessel or use a device that introduces distilled H2O as vapor into a controlled gas flow. If the sample does not pass through a dryer during emission testing, humidify your test gas to an H2O level approximately equal to the maximum mole fraction of H2O expected during emission testing. If the humidified NO span gas sample does not pass through a sample dryer, the quench verification calculations in § 1065.675 scale the measured H2O quench to the highest mole fraction of H2O expected during emission testing. If the sample passes through a dryer during emission testing, you must humidify your test gas to an H2O level at or above the level determined in § 1065.145(e)(2) for that dryer. For this case, the quench verification calculations in § 1065.675 do not scale the measured H2O quench.


(6) Introduce the humidified NO test gas into the sample system. You may introduce it upstream or downstream of any sample dryer that is used during emission testing. Note that the sample dryer must meet the sample dryer verification check in § 1065.342.


(7) Measure the mole fraction of H2O in the humidified NO span gas downstream of the sample dryer, xH2Omeas. We recommend that you measure xH2Omeas as close as possible to the CLD analyzer inlet. You may calculate xH2Omeas from measurements of dew point, Tdew, and absolute pressure, ptotal.


(8) Use good engineering judgment to prevent condensation in the transfer lines, fittings, or valves from the point where xH2Omeas is measured to the analyzer. We recommend that you design your system so the wall temperatures in the transfer lines, fittings, and valves from the point where xH2Omeas is measured to the analyzer are at least 5 °C above the local sample gas dew point.


(9) Measure the humidified NO span gas concentration with the CLD analyzer. Allow time for the analyzer response to stabilize. Stabilization time may include time to purge the transfer line and to account for analyzer response. While the analyzer measures the sample’s concentration, record the analyzer’s output for 30 seconds. Calculate the arithmetic mean of these data, xNOwet. Record xNOwet and use it in the quench verification calculations in § 1065.675.


(f) Corrective action. If the sum of the H2O quench plus the CO2 quench is less than −2% or greater than + 2%, take corrective action by repairing or replacing the analyzer. Before running emission tests, verify that the corrective action successfully restored the analyzer to proper functioning.


(g) Exceptions. The following exceptions apply:


(1) You may omit this verification if you can show by engineering analysis that for your NOX sampling system and your emission calculation procedures, the combined CO2 and H2O interference for your NOX CLD analyzer always affects your brake-specific NOX emission results within no more than ±1% of the applicable NOX standard. If you certify to a combined emission standard (such as a NOX + NMHC standard), scale your NOX results to the combined standard based on the measured results (after incorporating deterioration factors, if applicable). For example, if your final NOX + NMHC value is half of the emission standard, double the NOX result to estimate the level of NOX emissions corresponding to the applicable standard.


(2) You may use a NOX CLD analyzer that you determine does not meet this verification, as long as you try to correct the problem and the measurement deficiency does not adversely affect your ability to show that engines comply with all applicable emission standards.


[73 FR 59328, Oct. 8, 2008, as amended at 73 FR 73789, Dec. 4, 2008; 75 FR 23041, Apr. 30, 2010; 76 FR 57447, Sept. 15, 2011; 79 FR 23771, Apr. 28, 2014; 81 FR 74168, Oct. 25, 2016; 86 FR 34545, June 29, 2021]


§ 1065.372 NDUV analyzer HC and H2O interference verification.

(a) Scope and frequency. If you measure NOX using an NDUV analyzer, verify the amount of H2O and hydrocarbon interference after initial analyzer installation and after major maintenance.


(b) Measurement principles. Hydrocarbons and H2O can positively interfere with an NDUV analyzer by causing a response similar to NOX. If the NDUV analyzer uses compensation algorithms that utilize measurements of other gases to meet this interference verification, simultaneously conduct such measurements to test the algorithms during the analyzer interference verification.


(c) System requirements. A NOX NDUV analyzer must have combined H2O and HC interference within ±2% of the flow-weighted mean concentration of NOX expected at the standard, though we strongly recommend keeping interference within ±1%.


(d) Procedure. Perform the interference verification as follows:


(1) Start, operate, zero, and span the NOX NDUV analyzer according to the instrument manufacturer’s instructions.


(2) We recommend that you extract engine exhaust to perform this verification. Use a CLD that meets the specifications of subpart C of this part to quantify NOX in the exhaust. Use the CLD response as the reference value. Also measure HC in the exhaust with a FID analyzer that meets the specifications of subpart C of this part. Use the FID response as the reference hydrocarbon value.


(3) Upstream of any sample dryer, if one is used during testing, introduce the engine exhaust to the NDUV analyzer.


(4) Allow time for the analyzer response to stabilize. Stabilization time may include time to purge the transfer line and to account for analyzer response.


(5) While all analyzers measure the sample’s concentration, record 30 seconds of sampled data, and calculate the arithmetic means for the three analyzers.


(6) Subtract the CLD mean from the NDUV mean.


(7) Multiply this difference by the ratio of the flow-weighted mean HC concentration expected at the standard to the HC concentration measured during the verification. The analyzer meets the interference verification of this section if this result is within ±2% of the NOX concentration expected at the standard.


(e) Exceptions. The following exceptions apply:


(1) You may omit this verification if you can show by engineering analysis that for your NOX sampling system and your emission calculation procedures, the combined HC and H2O interference for your NOX NDUV analyzer always affects your brake-specific NOX emission results by less than 0.5% of the applicable NOX standard.


[70 FR 40516, July 13, 2005, as amended at 73 FR 37312, June 30, 2008; 76 FR 57447, Sept. 15, 2011]


§ 1065.375 Interference verification for N2O analyzers.

(a) Scope and frequency. See § 1065.275 to determine whether you need to verify the amount of interference after initial analyzer installation and after major maintenance.


(b) Measurement principles. Interference gases can positively interfere with certain analyzers by causing a response similar to N2O. If the analyzer uses compensation algorithms that utilize measurements of other gases to meet this interference verification, simultaneously conduct these other measurements to test the compensation algorithms during the analyzer interference verification.


(c) System requirements. Analyzers must have combined interference that is within (0.0 ±1.0) µmol/mol. We strongly recommend a lower interference that is within (0.0 ±0.5) µmol/mol.


(d) Procedure. Perform the interference verification as follows:


(1) Start, operate, zero, and span the N2O analyzer as you would before an emission test. If the sample is passed through a dryer during emission testing, you may run this verification test with the dryer if it meets the requirements of § 1065.342. Operate the dryer at the same conditions as you will for an emission test. You may also run this verification test without the sample dryer.


(2) Create a humidified test gas by bubbling a multi component span gas that incorporates the target interference species and meets the specifications in § 1065.750 through distilled H2O in a sealed vessel or use a device that introduces distilled H2O as vapor into a controlled gas flow. If the sample does not pass through a dryer during emission testing, humidify your test gas to an H2O level at or above the maximum expected during emission testing. If the sample passes through a dryer during emission testing, you must humidify your test gas to an H2O level at or above the level determined in § 1065.145(e)(2) for that dryer. Use interference span gas concentrations that are at least as high as the maximum expected during testing.


(3) Introduce the humidified interference test gas into the sample system. You may introduce it downstream of any sample dryer, if one is used during testing.


(4) If the sample is not passed through a dryer during this verification test, measure the H2O mole fraction, xH2O, of the humidified interference test gas as close as possible to the inlet of the analyzer. For example, measure dewpoint, Tdew, and absolute pressure, ptotal, to calculate xH2O. Verify that the H2O content meets the requirement in paragraph (d)(2) of this section. If the sample is passed through a dryer during this verification test, you must verify that the H2O content of the humidified test gas downstream of the vessel meets the requirement in paragraph (d)(2) of this section based on either direct measurement of the H2O content (e.g., dewpoint and pressure) or an estimate based on the vessel pressure and temperature. Use good engineering judgment to estimate the H2O content. For example, you may use previous direct measurements of H2O content to verify the vessel’s level of saturation.


(5) If a sample dryer is not used in this verification test, use good engineering judgment to prevent condensation in the transfer lines, fittings, or valves from the point where xH2O is measured to the analyzer. We recommend that you design your system so that the wall temperatures in the transfer lines, fittings, and valves from the point where xH2O is measured to the analyzer are at least 5 ºC above the local sample gas dewpoint.


(6) Allow time for the analyzer response to stabilize. Stabilization time may include time to purge the transfer line and to account for analyzer response.


(7) While the analyzer measures the sample’s concentration, record its output for 30 seconds. Calculate the arithmetic mean of this data. When performed with all the gases simultaneously, this is the combined interference.


(8) The analyzer meets the interference verification if the result of paragraph (d)(7) of this section meets the tolerance in paragraph (c) of this section.


(9) You may also run interference procedures separately for individual interference gases. If the interference gas levels used are higher than the maximum levels expected during testing, you may scale down each observed interference value (the arithmetic mean of 30 second data described in paragraph (d)(7) of this section) by multiplying the observed interference by the ratio of the maximum expected concentration value to the actual value used during this procedure. You may run separate interference concentrations of H2O (down to 0.025 mol/mol H2O content) that are lower than the maximum levels expected during testing, but you must scale up the observed H2O interference by multiplying the observed interference by the ratio of the maximum expected H2O concentration value to the actual value used during this procedure. The sum of the scaled interference values must meet the tolerance for combined interference as specified in paragraph (c) of this section.


[74 FR 56515, Oct. 30, 2009, as amended at 23771, Apr. 28, 2014; 81 FR 74168, Oct. 25, 2016; 86 FR 34545, June 29, 2021]


§ 1065.376 Chiller NO2 penetration.

(a) Scope and frequency. If you use a chiller to dry a sample upstream of a NOX measurement instrument, but you don’t use an NO2-to-NO converter upstream of the chiller, you must perform this verification for chiller NO2 penetration. Perform this verification after initial installation and after major maintenance.


(b) Measurement principles. A chiller removes H2O, which can otherwise interfere with a NOX measurement. However, liquid H2O remaining in an improperly designed chiller can remove NO2 from the sample. If a chiller is used without an NO2-to-NO converter upstream, it could remove NO2 from the sample prior NOX measurement.


(c) System requirements. A chiller must allow for measuring at least 95% of the total NO2 at the maximum expected concentration of NO2.


(d) Procedure. Use the following procedure to verify chiller performance:


(1) Instrument setup. Follow the analyzer and chiller manufacturers’ start-up and operating instructions. Adjust the analyzer and chiller as needed to optimize performance.


(2) Equipment setup and data collection. (i) Zero and span the total NOX gas analyzer(s) as you would before emission testing.


(ii) Select an NO2 calibration gas, balance gas of dry air, that has an NO2 concentration within ±5% of the maximum NO2 concentration expected during testing.


(iii) Overflow this calibration gas at the gas sampling system’s probe or overflow fitting. Allow for stabilization of the total NOX response, accounting only for transport delays and instrument response.


(iv) Calculate the mean of 30 seconds of recorded total NOX data and record this value as xNOXref.


(v) Stop flowing the NO2 calibration gas.


(vi) Next saturate the sampling system by overflowing a dewpoint generator’s output, set at a dewpoint of 50 °C, to the gas sampling system’s probe or overflow fitting. Sample the dewpoint generator’s output through the sampling system and chiller for at least 10 minutes until the chiller is expected to be removing a constant rate of H2O.


(vii) Immediately switch back to overflowing the NO2 calibration gas used to establish xNOxref. Allow for stabilization of the total NOX response, accounting only for transport delays and instrument response. Calculate the mean of 30 seconds of recorded total NOX data and record this value as xNOxmeas.


(viii) Correct xNOxmeas to xNOxdry based upon the residual H2O vapor that passed through the chiller at the chiller’s outlet temperature and pressure.


(3) Performance evaluation. If xNOxdry is less than 95% of xNOxref, repair or replace the chiller.


(e) Exceptions. The following exceptions apply:


(1) You may omit this verification if you can show by engineering analysis that for your NOX sampling system and your emission calculations procedures, the chiller always affects your brake-specific NOX emission results by less than 0.5% of the applicable NOX standard.


(2) You may use a chiller that you determine does not meet this verification, as long as you try to correct the problem and the measurement deficiency does not adversely affect your ability to show that engines comply with all applicable emission standards.


[73 FR 37312, June 30, 2008, as amended at 79 FR 23771, Apr. 28, 2014]


§ 1065.378 NO2-to-NO converter conversion verification.

(a) Scope and frequency. If you use an analyzer that measures only NO to determine NOX, you must use an NO2-to-NO converter upstream of the analyzer. Perform this verification after installing the converter, after major maintenance and within 35 days before an emission test. This verification must be repeated at this frequency to verify that the catalytic activity of the NO2-to-NO converter has not deteriorated.


(b) Measurement principles. An NO2-to-NO converter allows an analyzer that measures only NO to determine total NOX by converting the NO2 in exhaust to NO.


(c) System requirements. An NO2-to-NO converter must allow for measuring at least 95% of the total NO2 at the maximum expected concentration of NO2.


(d) Procedure. Use the following procedure to verify the performance of a NO2-to-NO converter:


(1) Instrument setup. Follow the analyzer and NO2-to-NO converter manufacturers’ start-up and operating instructions. Adjust the analyzer and converter as needed to optimize performance.


(2) Equipment setup. Connect an ozonator’s inlet to a zero-air or oxygen source and connect its outlet to one port of a three-way tee fitting. Connect an NO span gas to another port, and connect the NO2-to-NO converter inlet to the last port.


(3) Adjustments and data collection. Perform this check as follows:


(i) Set ozonator air off, turn ozonator power off, and set the analyzer to NO mode. Allow for stabilization, accounting only for transport delays and instrument response.


(ii) Use an NO concentration that is representative of the peak total NOX concentration expected during testing. The NO2 content of the gas mixture shall be less than 5% of the NO concentration. Record the concentration of NO by calculating the mean of 30 seconds of sampled data from the analyzer and record this value as xNOref.


(iii) Turn on the ozonator O2 supply and adjust the O2 flow rate so the NO indicated by the analyzer is about 10 percent less than xNOref. Record the concentration of NO by calculating the mean of 30 seconds of sampled data from the analyzer and record this value as xNO + O2mix.


(iv) Switch the ozonator on and adjust the ozone generation rate so the NO measured by the analyzer is 20 percent of xNOref or a value which would simulate the maximum concentration of NO2 expected during testing, while maintaining at least 10 percent unreacted NO. This ensures that the ozonator is generating NO2 at the maximum concentration expected during testing. Record the concentration of NO by calculating the mean of 30 seconds of sampled data from the analyzer and record this value as xNOmeas.


(v) Switch the NOX analyzer to NOX mode and measure total NOX. Record the concentration of NOX by calculating the mean of 30 seconds of sampled data from the analyzer and record this value as xNOxmeas.


(vi) Switch off the ozonator but maintain gas flow through the system. The NOX analyzer will indicate the NOX in the NO + O2 mixture. Record the concentration of NOX by calculating the mean of 30 seconds of sampled data from the analyzer and record this value as xNOx + O2mix.


(vii) Turn off the ozonator O2 supply. The NOX analyzer will indicate the NOX in the original NO-in-N2 mixture. Record the concentration of NOX by calculating the mean of 30 seconds of sampled data from the analyzer and record this value as xNOxref. This value should be no more than 5 percent above the xNOref value.


(4) Performance evaluation. Calculate the efficiency of the NOX converter by substituting the concentrations obtained into the following equation:




(5) If the result is less than 95%, repair or replace the NO2-to-NO converter.


(e) Exceptions. The following exceptions apply:


(1) You may omit this verification if you can show by engineering analysis that for your NOX sampling system and your emission calculations procedures, the converter always affects your brake-specific NOX emission results by less than 0.5% of the applicable NOX standard.


[70 FR 40516, July 13, 2005, as amended at 73 FR 37313, June 30, 2008; 73 FR 59330, Oct. 8, 2008; 76 FR 57447, Sept. 15, 2011]


PM Measurements

§ 1065.390 PM balance verifications and weighing process verification.

(a) Scope and frequency. This section describes three verifications.


(1) Independent verification of PM balance performance within 370 days before weighing any filter.


(2) Zero and span the balance within 12 h before weighing any filter.


(3) Verify that the mass determination of reference filters before and after a filter weighing session are less than a specified tolerance.


(b) Independent verification. Have the balance manufacturer (or a representative approved by the balance manufacturer) verify the balance performance within 370 days of testing. Balances have internal weights that compensate for drift due to environmental changes. These internal weights must be verified as part of this independent verification with external, certified calibration weights that meet the specifications in § 1065.790.


(c) Zeroing and spanning. You must verify balance performance by zeroing and spanning it with at least one calibration weight. Also, any external weights you use must meet the specifications in § 1065.790. Any weights internal to the PM balance used for this verification must be verified as described in paragraph (b) of this section.


(1) Use a manual procedure in which you zero the balance and span the balance with at least one calibration weight. If you normally use mean values by repeating the weighing process to improve the accuracy and precision of PM measurements, use the same process to verify balance performance.


(2) You may use an automated procedure to verify balance performance. For example most balances have internal weights for automatically verifying balance performance.


(d) Reference sample weighing. Verify all mass readings during a weighing session by weighing reference PM sample media (e.g., filters) before and after a weighing session. A weighing session may be as short as desired, but no longer than 80 hours, and may include both pre-test and post-test mass readings. We recommend that weighing sessions be eight hours or less. Successive mass determinations of each reference PM sample media (e.g., filter) must return the same value within ±10 µg or ±10% of the net PM mass expected at the standard (if known), whichever is higher. If successive reference PM sample media (e.g., filter) weighing events fail this criterion, invalidate all individual test media (e.g., filter) mass readings occurring between the successive reference media (e.g., filter) mass determinations. You may reweigh these media (e.g., filter) in another weighing session. If you invalidate a pre-test media (e.g., filter) mass determination, that test interval is void. Perform this verification as follows:


(1) Keep at least two samples of unused PM sample media (e.g., filters) in the PM-stabilization environment. Use these as references. If you collect PM with filters, select unused filters of the same material and size for use as references. You may periodically replace references, using good engineering judgment.


(2) Stabilize references in the PM stabilization environment. Consider references stabilized if they have been in the PM-stabilization environment for a minimum of 30 min, and the PM-stabilization environment has been within the specifications of § 1065.190(d) for at least the preceding 60 min.


(3) Exercise the balance several times with a reference sample. We recommend weighing ten samples without recording the values.


(4) Zero and span the balance. Using good engineering judgment, place a test mass such as a calibration weight on the balance, then remove it. After spanning, confirm that the balance returns to a zero reading within the normal stabilization time.


(5) Weigh each of the reference media (e.g., filters) and record their masses. We recommend using substitution weighing as described in § 1065.590(j). If you normally use mean values by repeating the weighing process to improve the accuracy and precision of the reference media (e.g., filter) mass, you must use mean values of sample media (e.g., filter) masses.


(6) Record the balance environment dewpoint, ambient temperature, and atmospheric pressure.


(7) Use the recorded ambient conditions to correct results for buoyancy as described in § 1065.690. Record the buoyancy-corrected mass of each of the references.


(8) Subtract each reference media’s (e.g., filter’s) buoyancy-corrected reference mass from its previously measured and recorded buoyancy-corrected mass.


(9) If any of the reference filters’ observed mass changes by more than that allowed under this paragraph, you must invalidate all PM mass determinations made since the last successful reference media (e.g. filter) mass validation. You may discard reference PM media (e.g. filters) if only one of the filter’s mass changes by more than the allowable amount and you can positively identify a special cause for that filter’s mass change that would not have affected other in-process filters. Thus, the validation can be considered a success. In this case, you do not have to include the contaminated reference media when determining compliance with paragraph (d)(10) of this section, but the affected reference filter must be immediately discarded and replaced prior to the next weighing session.


(10) If any of the reference masses change by more than that allowed under this paragraph (d), invalidate all PM results that were determined between the two times that the reference masses were determined. If you discarded reference PM sample media according to paragraph (d)(9) of this section, you must still have at least one reference mass difference that meets the criteria in this paragraph (d). Otherwise, you must invalidate all PM results that were determined between the two times that the reference media (e.g., filters) masses were determined.


[73 FR 37313, June 30, 2008, as amended at 75 FR 23042, Apr. 30, 2010; 75 FR 68463, Nov. 8, 2010; 81 FR 74168, Oct. 25, 2016]


§ 1065.395 Inertial PM balance verifications.

This section describes how to verify the performance of an inertial PM balance.


(a) Independent verification. Have the balance manufacturer (or a representative approved by the balance manufacturer) verify the inertial balance performance within 370 days before testing.


(b) Other verifications. Perform other verifications using good engineering judgment and instrument manufacturer recommendations.


Subpart E – Engine Selection, Preparation, and Maintenance

§ 1065.401 Test engine selection.

While all engine configurations within a certified engine family must comply with the applicable standards in the standard-setting part, you need not test each configuration for certification.


(a) Select an engine configuration within the engine family for testing, as follows:


(1) Test the engine that we specify, whether we issue general guidance or give you specific instructions.


(2) If we do not tell you which engine to test, follow any instructions in the standard-setting part.


(3) If we do not tell you which engine to test and the standard-setting part does not include specifications for selecting test engines, use good engineering judgment to select the engine configuration within the engine family that is most likely to exceed an emission standard.


(b) In the absence of other information, the following characteristics are appropriate to consider when selecting the engine to test:


(1) Maximum fueling rates.


(2) Maximum loads.


(3) Maximum in-use speeds.


(4) Highest sales volume.


(c) For our testing, we may select any engine configuration within the engine family.


§ 1065.405 Test engine preparation and maintenance.

This part 1065 describes how to test engines for a variety of purposes, including certification testing, production-line testing, and in-use testing. Depending on which type of testing is being conducted, different preparation and maintenance requirements apply for the test engine.


(a) If you are testing an emission-data engine for certification, make sure it is built to represent production engines, consistent with paragraph (f) of this section. This includes governors that you normally install on production engines. Production engines should also be tested with their installed governors. If your engine is equipped with multiple user-selectable governor types and if the governor does not manipulate the emission control system (i.e., the governor only modulates an “operator demand” signal such as commanded fuel rate, torque, or power), choose the governor type that allows the test cell to most accurately follow the duty cycle. If the governor manipulates the emission control system, treat it as an adjustable parameter. See paragraph (b) of this section for guidance on setting adjustable parameters. If you do not install governors on production engines, simulate a governor that is representative of a governor that others will install on your production engines. In certain circumstances, you may incorporate test cell components to simulate an in-use configuration, consistent with good engineering judgment. For example, §§ 1065.122 and 1065.125 allow the use of test cell components to represent engine cooling and intake air systems. The provisions in § 1065.110(e) also apply to emission-data engines for certification.


(b) We may set adjustable parameters to any value in the valid range, and you are responsible for controlling emissions over the full valid range. For each adjustable parameter, if the standard-setting part has no unique requirements and if we have not specified a value, use good engineering judgment to select the most common setting. If information on the most common setting is not available, select the setting representing the engine’s original shipped configuration. If information on the most common and original settings is not available, set the adjustable parameter in the middle of the valid range.


(c) Testing generally occurs only after the test engine has undergone a stabilization step (or in-use operation). If the engine has not already been stabilized, run the test engine, with all emission control systems operating, long enough to stabilize emission levels. Note that you must generally use the same stabilization procedures for emission-data engines for which you apply the same deterioration factors so low-hour emission-data engines are consistent with the low-hour engine used to develop the deterioration factor.


(1) Unless otherwise specified in the standard-setting part, you may consider emission levels stable without measurement after 50 h of operation. If the engine needs less operation to stabilize emission levels, record your reasons and the methods for doing this, and give us these records if we ask for them. If the engine will be tested for certification as a low-hour engine, see the standard-setting part for limits on testing engines to establish low-hour emission levels.


(2) You may stabilize emissions from a catalytic exhaust aftertreatment device by operating it on a different engine, consistent with good engineering judgment. Note that good engineering judgment requires that you consider both the purpose of the test and how your stabilization method will affect the development and application of deterioration factors. For example, this method of stabilization is generally not appropriate for production engines. We may also allow you to stabilize emissions from a catalytic exhaust aftertreatment device by operating it on an engine-exhaust simulator.


(d) Record any maintenance, modifications, parts changes, diagnostic or emissions testing and document the need for each event. You must provide this information if we request it.


(e) For accumulating operating hours on your test engines, select engine operation that represents normal in-use operation for the engine family.


(f) If your engine will be used in a vehicle equipped with a canister for storing evaporative hydrocarbons for eventual combustion in the engine and the test sequence involves a cold-start or hot-start duty cycle, attach a canister to the engine before running an emission test. You may omit using an evaporative canister for any hot-stabilized duty cycles. You may request to omit using an evaporative canister during testing if you can show that it would not affect your ability to show compliance with the applicable emission standards. You may operate the engine without an installed canister for service accumulation. Prior to an emission test, use the following steps to precondition a canister and attach it to your engine:


(1) Use a canister and plumbing arrangement that represents the in-use configuration of the largest capacity canister in all expected applications.


(2) Precondition the canister as described in 40 CFR 86.132-96(j).


(3) Connect the canister’s purge port to the engine.


(4) Plug the canister port that is normally connected to the fuel tank.


(g) This paragraph (g) defines the components that are considered to be part of the engine for laboratory testing. See § 1065.110 for provisions related to system boundaries with respect to work inputs and outputs.


(1) This paragraph (g)(1) describes certain criteria for considering a component to be part of the test engine. The criteria are intended to apply broadly, such that a component would generally be considered part of the engine in cases of uncertainty. Except as specified in paragraph (g)(2) of this section, an engine-related component meeting both the following criteria is considered to be part of the test engine for purposes of testing and for stabilizing emission levels, preconditioning, and measuring emission levels:


(i) The component directly affects the functioning of the engine, is related to controlling emissions, or transmits engine power. This would include engine cooling systems, engine controls, and transmissions.


(ii) The component is covered by the applicable certificate of conformity. For example, this criterion would typically exclude radiators not described in an application for certification.


(2) This paragraph (g)(2) applies for engine-related components that meet the criteria of paragraph (g)(1) of this section, but that are part of the laboratory setup or are used for other engines. Such components are considered to be part of the test engine for preconditioning, but not for engine stabilization. For example, if you test your engines using the same laboratory exhaust tubing for all tests, there would be no restrictions on the number of test hours that could be accumulated with the tubing, but it would need to be preconditioned separately for each engine.


[79 FR 23772, Apr. 28, 2014]


§ 1065.410 Maintenance limits for stabilized test engines.

(a) After you stabilize the test engine’s emission levels, you may do maintenance as allowed by the standard-setting part. However, you may not do any maintenance based on emission measurements from the test engine (i.e., unscheduled maintenance).


(b) For any critical emission-related maintenance – other than what we specifically allow in the standard-setting part – you must completely test an engine for emissions before and after doing any maintenance that might affect emissions, unless we waive this requirement.


(c) If you inspect an engine, keep a record of the inspection and update your application for certification to document any changes that result. You may use any kind of equipment, instrument, or tool that is available at dealerships and other service outlets to identify malfunctioning components or perform maintenance.


(d) You may repair defective parts from a test engine if they are unrelated to emission control. You must ask us to approve repairs that might affect the engine’s emission controls. If we determine that a part failure, system malfunction, or associated repair makes the engine’s emission controls unrepresentative of production engines, you may not use it as an emission-data engine. Also, if your test engine has a major mechanical failure that requires you to take it apart, you may no longer use it as an emission-data engine.


[70 FR 40516, July 13, 2005, as amended at 73 FR 37314, June 30, 2008; 79 FR 23773, Apr. 28, 2014; 80 FR 9118, Feb. 19, 2015; 86 FR 34545, June 29, 2021]


§ 1065.415 Durability demonstration.

If the standard-setting part requires durability testing, you must accumulate service in a way that represents how you expect the engine to operate in use. You may accumulate service hours using an accelerated schedule, such as through continuous operation or by using duty cycles that are more aggressive than in-use operation, subject to any pre-approval requirements established in the applicable standard-setting part.


(a) Maintenance. The following limits apply to the maintenance that we allow you to do on an emission-data engine:


(1) You may perform scheduled maintenance that you recommend to operators, but only if it is consistent with the standard-setting part’s restrictions.


(2) You may perform additional maintenance only as specified in § 1065.410 or allowed by the standard-setting part.


(b) Emission measurements. Perform emission tests following the provisions of the standard setting part and this part, as applicable. Perform emission tests to determine deterioration factors consistent with good engineering judgment. Evenly space any tests between the first and last test points throughout the durability period, unless we approve otherwise.


[70 FR 40516, July 13, 2005, as amended at 73 FR 37315, June 30, 2008]


Subpart F – Performing an Emission Test Over Specified Duty Cycles

§ 1065.501 Overview.

(a) Use the procedures detailed in this subpart to measure engine emissions over a specified duty cycle. Refer to subpart J of this part for field test procedures that describe how to measure emissions during in-use engine operation. This section describes how to:


(1) Map your engine, if applicable, by recording specified speed and torque data, as measured from the engine’s primary output shaft.


(2) Transform normalized duty cycles into reference duty cycles for your engine by using an engine map.


(3) Prepare your engine, equipment, and measurement instruments for an emission test.


(4) Perform pre-test procedures to verify proper operation of certain equipment and analyzers.


(5) Record pre-test data.


(6) Start or restart the engine and sampling systems.


(7) Sample emissions throughout the duty cycle.


(8) Record post-test data.


(9) Perform post-test procedures to verify proper operation of certain equipment and analyzers.


(10) Weigh PM samples.


(b) Unless we specify otherwise, you may control the regeneration timing of infrequently regenerated aftertreatment devices such as diesel particulate filters using good engineering judgment. You may control the regeneration timing using a sequence of engine operating conditions or you may initiate regeneration with an external regeneration switch or other command. This provision also allows you to ensure that a regeneration event does not occur during an emission test.


(c) An emission test generally consists of measuring emissions and other parameters while an engine follows one or more duty cycles that are specified in the standard-setting part. There are two general types of duty cycles:


(1) Transient cycles. Transient duty cycles are typically specified in the standard-setting part as a second-by-second sequence of speed commands and normalized torque (or power) commands. Operate an engine over a transient cycle such that the speed and torque of the engine’s primary output shaft follows the target values. Proportionally sample emissions and other parameters and use the calculations in subpart G of this part to calculate emissions. Start a transient test according to the standard-setting part, as follows:


(i) A cold-start transient cycle where you start to measure emissions just before starting an engine that has not been warmed up.


(ii) A hot-start transient cycle where you start to measure emissions just before starting a warmed-up engine.


(iii) A hot running transient cycle where you start to measure emissions after an engine is started, warmed up, and running.


(2) Steady-state cycles. Steady-state duty cycles are typically specified in the standard-setting part as a list of discrete operating points (modes or notches), where each operating point has one value of a normalized speed command and one value of a normalized torque (or power) command. Ramped-modal cycles for steady-state testing also list test times for each mode and transition times between modes where speed and torque are linearly ramped between modes, even for cycles with % power. Start a steady-state cycle as a hot running test, where you start to measure emissions after an engine is started, warmed up and running. Run a steady-state duty cycle as a discrete-mode cycle or a ramped-modal cycle, as follows:


(i) Discrete-mode cycles. Before emission sampling, stabilize an engine at the first discrete mode of the duty cycle specified in the standard-setting part. Sample emissions and other parameters for that mode in the same manner as a transient cycle, with the exception that reference speed and torque values are constant. Record data for that mode, transition to the next mode, and then stabilize the engine at the next mode. Continue to sample each mode discretely as a separate test interval and calculate composite brake-specific emission results according to § 1065.650(g)(2).


(A) Use good engineering judgment to determine the time required to stabilize the engine. You may make this determination before starting the test based on prior experience, or you may make this determination in real time based an automated stability criteria. If needed, you may continue to operate the engine after reaching stability to get laboratory equipment ready for sampling.


(B) Collect PM on separate PM sample media for each mode.


(C) The minimum sample time is 60 seconds. We recommend that you sample both gaseous and PM emissions over the same test interval. If you sample gaseous and PM emissions over different test intervals, there must be no change in engine operation between the two test intervals. These two test intervals may completely or partially overlap, they may run consecutively, or they may be separated in time.


(ii) Ramped-modal cycles. Perform ramped-modal cycles similar to the way you would perform transient cycles, except that ramped-modal cycles involve mostly steady-state engine operation. Generate a ramped-modal duty cycle as a sequence of second-by-second (1 Hz) reference speed and torque points. Run the ramped-modal duty cycle in the same manner as a transient cycle and use the 1 Hz reference speed and torque values to validate the cycle, even for cycles with % power. Proportionally sample emissions and other parameters during the cycle and use the calculations in subpart G of this part to calculate emissions.


(d) Other subparts in this part identify how to select and prepare an engine for testing (subpart E), how to perform the required engine service accumulation (subpart E), and how to calculate emission results (subpart G).


(e) Subpart J of this part describes how to perform field testing.


[79 FR 23773, Apr. 28, 2014]


§ 1065.510 Engine mapping.

(a) Applicability, scope, and frequency. An engine map is a data set that consists of a series of paired data points that represent the maximum brake torque versus engine speed, measured at the engine’s primary output shaft. Map your engine if the standard-setting part requires engine mapping to generate a duty cycle for your engine configuration. Map your engine while it is connected to a dynamometer or other device that can absorb work output from the engine’s primary output shaft according to § 1065.110. Configure any auxiliary work inputs and outputs such as hybrid, turbo-compounding, or thermoelectric systems to represent their in-use configurations, and use the same configuration for emission testing. See Figure 1 of § 1065.210. This may involve configuring initial states of charge and rates and times of auxiliary-work inputs and outputs. We recommend that you contact the Designated Compliance Officer before testing to determine how you should configure any auxiliary-work inputs and outputs. Use the most recent engine map to transform a normalized duty cycle from the standard-setting part to a reference duty cycle specific to your engine. Normalized duty cycles are specified in the standard-setting part. You may update an engine map at any time by repeating the engine-mapping procedure. You must map or re-map an engine before a test if any of the following apply:


(1) If you have not performed an initial engine map.


(2) If the atmospheric pressure near the engine’s air inlet is not within ±5 kPa of the atmospheric pressure recorded at the time of the last engine map.


(3) If the engine or emission-control system has undergone changes that might affect maximum torque performance. This includes changing the configuration of auxiliary work inputs and outputs.


(4) If you capture an incomplete map on your first attempt or you do not complete a map within the specified time tolerance. You may repeat mapping as often as necessary to capture a complete map within the specified time.


(b) Mapping variable-speed engines. Map variable-speed engines as follows:


(1) Record the atmospheric pressure.


(2) Warm up the engine by operating it. We recommend operating the engine at any speed and at approximately 75% of its expected maximum power. Continue the warm-up until the engine coolant, block, or head absolute temperature is within ±2% of its mean value for at least 2 min or until the engine thermostat controls engine temperature.


(3) Operate the engine at its warm idle speed as follows:


(i) For engines with a low-speed governor, set the operator demand to minimum, use the dynamometer or other loading device to target a torque of zero on the engine’s primary output shaft, and allow the engine to govern the speed. Measure this warm idle speed; we recommend recording at least 30 values of speed and using the mean of those values.


(ii) For engines without a low-speed governor, operate the engine at warm idle speed and zero torque on the engine’s primary output shaft. You may use the dynamometer to target a torque of zero on the engine’s primary output shaft, and manipulate the operator demand to control the speed to target the manufacturer-declared value for the lowest engine speed possible with minimum load (also known as manufacturer-declared warm idle speed). You may alternatively use the dynamometer to target the manufacturer-declared warm idle speed and manipulate the operator demand to control the torque on the engine’s primary output shaft to zero.


(iii) For variable-speed engines with or without a low-speed governor, if a nonzero idle torque is representative of in-use operation, you may use the dynamometer or operator demand to target the manufacturer-declared idle torque instead of targeting zero torque as specified in paragraphs (b)(3)(i) and (ii) of this section. Control speed as specified in paragraph (b)(3)(i) or (ii) of this section, as applicable. If you use this option for engines with a low-speed governor to measure the warm idle speed with the manufacturer-declared torque at this step, you may use this as the warm-idle speed for cycle generation as specified in paragraph (b)(6) of this section. However, if you identify multiple warm idle torques under paragraph (f)(4)(i) of this section, measure the warm idle speed at only one torque level for this paragraph (b)(3).


(4) Set operator demand to maximum and control engine speed at (95 ±1) % of its warm idle speed determined above for at least 15 seconds. For engines with reference duty cycles whose lowest speed is greater than warm idle speed, you may start the map at (95 ±1) % of the lowest reference speed.


(5) Perform one of the following:


(i) For any engine subject only to steady-state duty cycles, you may perform an engine map by using discrete speeds. Select at least 20 evenly spaced setpoints from 95% of warm idle speed to the highest speed above maximum power at which 50% of maximum power occurs. We refer to this 50% speed as the check point speed as described in paragraph (b)(5)(iii) of this section. At each setpoint, stabilize speed and allow torque to stabilize. We recommend that you stabilize an engine for at least 15 seconds at each setpoint and record the mean feedback speed and torque of the last (4 to 6) seconds. Record the mean speed and torque at each setpoint. Use linear interpolation to determine intermediate speeds and torques. Use this series of speeds and torques to generate the power map as described in paragraph (e) of this section.


(ii) For any variable-speed engine, you may perform an engine map by using a continuous sweep of speed by continuing to record the mean feedback speed and torque at 1 Hz or more frequently and increasing speed at a constant rate such that it takes (4 to 6) min to sweep from 95% of warm idle speed to the check point speed as described in paragraph (b)(5)(iii) of this section. Use good engineering judgment to determine when to stop recording data to ensure that the sweep is complete. In most cases, this means that you can stop the sweep at any point after the power falls to 50% of the maximum value. From the series of mean speed and maximum torque values, use linear interpolation to determine intermediate values. Use this series of speeds and torques to generate the power map as described in paragraph (e) of this section.


(iii) The check point speed of the map is the highest speed above maximum power at which 50% of maximum power occurs. If this speed is unsafe or unachievable (e.g., for ungoverned engines or engines that do not operate at that point), use good engineering judgment to map up to the maximum safe speed or maximum achievable speed. For discrete mapping, if the engine cannot be mapped to the check point speed, make sure the map includes at least 20 points from 95% of warm idle to the maximum mapped speed. For continuous mapping, if the engine cannot be mapped to the check point speed, verify that the sweep time from 95% of warm idle to the maximum mapped speed is (4 to 6) min.


(iv) Note that under § 1065.10(c)(1) we may allow you to disregard portions of the map when selecting maximum test speed if the specified procedure would result in a duty cycle that does not represent in-use operation.


(6) Use one of the following methods to determine warm high-idle speed for engines with a high-speed governor if they are subject to transient testing with a duty cycle that includes reference speed values above 100%:


(i) You may use a manufacturer-declared warm high-idle speed if the engine is electronically governed. For engines with a high-speed governor that shuts off torque output at a manufacturer-specified speed and reactivates at a lower manufacturer-specified speed (such as engines that use ignition cut-off for governing), declare the middle of the specified speed range as the warm high-idle speed.


(ii) Measure the warm high-idle speed using the following procedure:


(A) Set operator demand to maximum and use the dynamometer to target zero torque on the engine’s primary output shaft. If the mean feedback torque is within ±1% of Tmax mapped, you may use the observed mean feedback speed at that point as the measured warm high-idle speed.


(B) If the engine is unstable as a result of in-use production components (such as engines that use ignition cut-off for governing, as opposed to unstable dynamometer operation), you must use the mean feedback speed from paragraph (b)(6)(ii)(A) of this section as the measured warm high-idle speed. The engine is considered unstable if any of the 1 Hz speed feedback values are not within ±2% of the calculated mean feedback speed. We recommend that you determine the mean as the value representing the midpoint between the observed maximum and minimum recorded feedback speed.


(C) If your dynamometer is not capable of achieving a mean feedback torque within ±1% of Tmax mapped, operate the engine at a second point with operator demand set to maximum with the dynamometer set to target a torque equal to the recorded mean feedback torque on the previous point plus 20% of Tmax mapped. Use this data point and the data point from paragraph (b)(6)(ii)(A) of this section to extrapolate the engine speed where torque is equal to zero.


(D) You may use a manufacturer-declared Tmax instead of the measured Tmax mapped. If you do this, or if you are able to determine mean feedback speed as described in paragraphs (b)(6)(ii)(A) and (B) of this section, you may measure the warm high-idle speed before running the speed sweep specified in paragraph (b)(5) of this section.


(7) For engines with a low-speed governor, if a nonzero idle torque is representative of in-use operation, operate the engine at warm idle with the manufacturer-declared idle torque. Set the operator demand to minimum, use the dynamometer to target the declared idle torque, and allow the engine to govern the speed. Measure this speed and use it as the warm idle speed for cycle generation in § 1065.512. We recommend recording at least 30 values of speed and using the mean of those values. If you identify multiple warm idle torques under paragraph (f)(4)(i) of this section, measure the warm idle speed at each torque. You may map the idle governor at multiple load levels and use this map to determine the measured warm idle speed at the declared idle torque(s).


(c) Negative torque mapping. If your engine is subject to a reference duty cycle that specifies negative torque values (i.e., engine motoring), generate a motoring torque curve by any of the following procedures:


(1) Multiply the positive torques from your map by −40%. Use linear interpolation to determine intermediate values.


(2) Map the amount of negative torque required to motor the engine by repeating paragraph (b) of this section with minimum operator demand. You may start the negative torque map at either the minimum or maximum speed from paragraph (b) of this section.


(3) Determine the amount of negative torque required to motor the engine at the following two points near the ends of the engine’s speed range. Operate the engine at these two points at minimum operator demand. Use linear interpolation to determine intermediate values.


(i) Low-speed point. For engines without a low-speed governor, determine the amount of negative torque at warm idle speed. For engines with a low-speed governor, motor the engine above warm idle speed so the governor is inactive and determine the amount of negative torque at that speed.


(ii) High-speed point. For engines without a high-speed governor, determine the amount of negative torque at the maximum safe speed or the maximum representative speed. For engines with a high-speed governor, determine the amount of negative torque at a speed at or above nhi per § 1065.610(c)(2).


(4) For engines with an electric hybrid system, map the negative torque required to motor the engine and absorb any power delivered from the RESS by repeating paragraph (g)(2) of this section with minimum operator demand, stopping the sweep to discharge the RESS when the absolute instantaneous power measured from the RESS drops below the expected maximum absolute power from the RESS by more than 2% of total system maximum power (including engine motoring and RESS power) as determined from mapping the negative torque.


(5) For engines with an electric hybrid system, map the negative torque required to motor the engine by repeating paragraph (b) of this section with minimum operator demand and a fully charged RESS or with the hybrid system disabled, such that it doesn’t affect the motoring torque. You may start the negative torque map at either the minimum or maximum speed from paragraph (b) of this section.


(d) Mapping constant-speed engines. For constant-speed engines, generate a map as follows:


(1) Record the atmospheric pressure.


(2) Warm up the engine by operating it. We recommend operating the engine at approximately 75% of the engine’s expected maximum power. Continue the warm-up until the engine coolant, block, or head absolute temperature is within ±2% of its mean value for at least 2 min or until the engine thermostat controls engine temperature.


(3) You may operate the engine with a production constant-speed governor or simulate a constant-speed governor by controlling engine speed with an operator demand control system described in § 1065.110. Use either isochronous or speed-droop governor operation, as appropriate.


(4) With the governor or simulated governor controlling speed using operator demand, operate the engine at no-load governed speed (at high speed, not low idle) for at least 15 seconds.


(5) Record at 1 Hz the mean of feedback speed and torque. Use the dynamometer to increase torque at a constant rate. Unless the standard-setting part specifies otherwise, complete the map such that it takes (2 to 4) min to sweep from no-load governed speed to the speed below maximum mapped power at which the engine develops 90% of maximum mapped power. You may map your engine to lower speeds. Stop recording after you complete the sweep. Use this series of speeds and torques to generate the power map as described in paragraph (e) of this section.


(i) For constant-speed engines subject only to steady-state testing, you may perform an engine map by using a series of discrete torques. Select at least five evenly spaced torque setpoints from no-load to 80% of the manufacturer-declared test torque or to a torque derived from your published maximum power level if the declared test torque is unavailable. Starting at the 80% torque point, select setpoints in 2.5% or smaller intervals, stopping at the endpoint torque. The endpoint torque is defined as the first discrete mapped torque value greater than the torque at maximum observed power where the engine outputs 90% of the maximum observed power; or the torque when engine stall has been determined using good engineering judgment (i.e. sudden deceleration of engine speed while adding torque). You may continue mapping at higher torque setpoints. At each setpoint, allow torque and speed to stabilize. Record the mean feedback speed and torque at each setpoint. From this series of mean feedback speed and torque values, use linear interpolation to determine intermediate values. Use this series of mean feedback speeds and torques to generate the power map as described in paragraph (e) of this section.


(ii) For any constant-speed engine, you may perform an engine map with a continuous torque sweep by continuing to record the mean feedback speed and torque at 1 Hz or more frequently. Use the dynamometer to increase torque. Increase the reference torque at a constant rate from no-load to the endpoint torque as defined in paragraph (d)(5)(i) of this section. You may continue mapping at higher torque setpoints. Unless the standard-setting part specifies otherwise, target a torque sweep rate equal to the manufacturer-declared test torque (or a torque derived from your published power level if the declared test torque is not known) divided by 180 seconds. Stop recording after you complete the sweep. Verify that the average torque sweep rate over the entire map is within ±7% of the target torque sweep rate. Use linear interpolation to determine intermediate values from this series of mean feedback speed and torque values. Use this series of mean feedback speeds and torques to generate the power map as described in paragraph (e) of this section.


(iii) For any isochronous governed (0% speed droop) constant-speed engine, you may map the engine with two points as described in this paragraph (d)(5)(iii). After stabilizing at the no-load governed speed in paragraph (d)(4) of this section, record the mean feedback speed and torque. Continue to operate the engine with the governor or simulated governor controlling engine speed using operator demand, and control the dynamometer to target a speed of 99.5% of the recorded mean no-load governed speed. Allow speed and torque to stabilize. Record the mean feedback speed and torque. Record the target speed. The absolute value of the speed error (the mean feedback speed minus the target speed) must be no greater than 0.1% of the recorded mean no-load governed speed. From this series of two mean feedback speed and torque values, use linear interpolation to determine intermediate values. Use this series of two mean feedback speeds and torques to generate a power map as described in paragraph (e) of this section. Note that the measured maximum test torque as determined in § 1065.610 (b)(1) will be the mean feedback torque recorded on the second point.


(e) Power mapping. For all engines, create a power-versus-speed map by transforming torque and speed values to corresponding power values. Use the mean values from the recorded map data. Do not use any interpolated values. Multiply each torque by its corresponding speed and apply the appropriate conversion factors to arrive at units of power (kW). Interpolate intermediate power values between these power values, which were calculated from the recorded map data.


(f) Measured and declared test speeds and torques. You must select test speeds and torques for cycle generation as required in this paragraph (f). “Measured” values are either directly measured during the engine mapping process or they are determined from the engine map. “Declared” values are specified by the manufacturer. When both measured and declared values are available, you may use declared test speeds and torques instead of measured speeds and torques if they meet the criteria in this paragraph (f). Otherwise, you must use measured speeds and torques derived from the engine map.


(1) Measured speeds and torques. Determine the applicable speeds and torques for the duty cycles you will run:


(i) Measured maximum test speed for variable-speed engines according to § 1065.610.


(ii) Measured maximum test torque for constant-speed engines according to § 1065.610.


(iii) Measured “A”, “B”, and “C” speeds for variable-speed engines according to § 1065.610.


(iv) Measured intermediate speed for variable-speed engines according to § 1065.610.


(v) For variable-speed engines with a low-speed governor, measure warm idle speed according to § 1065.510(b) and use this speed for cycle generation in § 1065.512. For engines with no low-speed governor, instead use the manufacturer-declared warm idle speed.


(2) Required declared speeds. You must declare the lowest engine speed possible with minimum load (i.e., manufacturer-declared warm idle speed). This is applicable only to variable-speed engines with no low-speed governor. For engines with no low-speed governor, the declared warm idle speed is used for cycle generation in § 1065.512. Declare this speed in a way that is representative of in-use operation. For example, if your engine is typically connected to an automatic transmission or a hydrostatic transmission, declare this speed at the idle speed at which your engine operates when the transmission is engaged.


(3) Optional declared speeds. You may use declared speeds instead of measured speeds as follows:


(i) You may use a declared value for maximum test speed for variable-speed engines if it is within (97.5 to 102.5) % of the corresponding measured value. You may use a higher declared speed if the length of the “vector” at the declared speed is within 2% of the length of the “vector” at the measured value. The term vector refers to the square root of the sum of normalized engine speed squared and the normalized full-load power (at that speed) squared, consistent with the calculations in § 1065.610.


(ii) You may use a declared value for intermediate, “A”, “B”, or “C” speeds for steady-state tests if the declared value is within (97.5 to 102.5)% of the corresponding measured value.


(iii) For electronically governed engines, you may use a declared warm high-idle speed for calculating the alternate maximum test speed as specified in § 1065.610.


(4) Required declared torques. If a nonzero idle or minimum torque is representative of in-use operation, you must declare the appropriate torque as follows:


(i) For variable-speed engines, declare a warm idle torque that is representative of in-use operation. For example, if your engine is typically connected to an automatic transmission or a hydrostatic transmission, declare the torque that occurs at the idle speed at which your engine operates when the transmission is engaged. Use this value for cycle generation. You may use multiple warm idle torques and associated idle speeds in cycle generation for representative testing. For example, for cycles that start the engine and begin with idle, you may start a cycle in idle with the transmission in neutral with zero torque and later switch to a different idle with the transmission in drive with the Curb-Idle Transmission Torque (CITT). For variable-speed engines intended primarily for propulsion of a vehicle with an automatic transmission where that engine is subject to a transient duty cycle with idle operation, you must declare a CITT. We recommend that you specify CITT as a function of idle speed for engines with adjustable warm idle or enhanced-idle. You may specify a CITT based on typical applications at the mean of the range of idle speeds you specify at stabilized temperature conditions.


(ii) For constant-speed engines, declare a warm minimum torque that is representative of in-use operation. For example, if your engine is typically connected to a machine that does not operate below a certain minimum torque, declare this torque and use it for cycle generation.


(5) Optional declared torques. (i) For variable-speed engines you may declare a maximum torque over the engine operating range. You may use the declared value for measuring warm high-idle speed as specified in this section.


(ii) For constant-speed engines you may declare a maximum test torque. You may use the declared value for cycle generation if it is within (95 to 100) % of the measured value.


(g) Mapping variable-speed engines with an electric hybrid system. Map variable-speed engines that include electric hybrid systems as described in this paragraph (g). You may ask to apply these provisions to other types of hybrid engines, consistent with good engineering judgment. However, do not use this procedure for engines used in hybrid vehicles where the hybrid system is certified as part of the vehicle rather than the engine. Follow the steps for mapping a variable-speed engine as given in paragraph (b)(5) of this section except as noted in this paragraph (g). You must generate one engine map with the hybrid system inactive as described in paragraph (g)(1) of this section, and a separate map with the hybrid system active as described in paragraph (g)(2) of this section. See the standard-setting part to determine how to use these maps. The map with the system inactive is typically used to generate steady-state duty cycles, but may also be used to generate transient cycles, such as those that do not involve engine motoring. This hybrid-inactive map is also used for generating the hybrid-active map. The hybrid-active map is typically used to generate transient duty cycles that involve engine motoring.


(1) Prepare the engine for mapping by either deactivating the hybrid system or by operating the engine as specified in paragraph (b)(4) of this section and remaining at this condition until the rechargeable energy storage system (RESS) is depleted. Once the hybrid has been disabled or the RESS is depleted, perform an engine map as specified in paragraph (b)(5) of this section. If the RESS was depleted instead of deactivated, ensure that instantaneous power from the RESS remains less than 2% of the instantaneous measured power from the engine (or engine-hybrid system) at all engine speeds.


(2) The purpose of the mapping procedure in this paragraph (g) is to determine the maximum torque available at each speed, such as what might occur during transient operation with a fully charged RESS. Use one of the following methods to generate a hybrid-active map:


(i) Perform an engine map by using a series of continuous sweeps to cover the engine’s full range of operating speeds. Prepare the engine for hybrid-active mapping by ensuring that the RESS state of charge is representative of normal operation. Perform the sweep as specified in paragraph (b)(5)(ii) of this section, but stop the sweep to charge the RESS when the power measured from the RESS drops below the expected maximum power from the RESS by more than 2% of total system power (including engine and RESS power). Unless good engineering judgment indicates otherwise, assume that the expected maximum power from the RESS is equal to the measured RESS power at the start of the sweep segment. For example, if the 3-second rolling average of total engine-RESS power is 200 kW and the power from the RESS at the beginning of the sweep segment is 50 kW, once the power from the RESS reaches 46 kW, stop the sweep to charge the RESS. Note that this assumption is not valid where the hybrid motor is torque-limited. Calculate total system power as a 3-second rolling average of instantaneous total system power. After each charging event, stabilize the engine for 15 seconds at the speed at which you ended the previous segment with operator demand set to maximum before continuing the sweep from that speed. Repeat the cycle of charging, mapping, and recharging until you have completed the engine map. You may shut down the system or include other operation between segments to be consistent with the intent of this paragraph (g)(2)(i). For example, for systems in which continuous charging and discharging can overheat batteries to an extent that affects performance, you may operate the engine at zero power from the RESS for enough time after the system is recharged to allow the batteries to cool. Use good engineering judgment to smooth the torque curve to eliminate discontinuities between map intervals.


(ii) Perform an engine map by using discrete speeds. Select map setpoints at intervals defined by the ranges of engine speed being mapped. From 95% of warm idle speed to 90% of the expected maximum test speed, select setpoints that result in a minimum of 13 equally spaced speed setpoints. From 90% to 110% of expected maximum test speed, select setpoints in equally spaced intervals that are nominally 2% of expected maximum test speed. Above 110% of expected maximum test speed, select setpoints based on the same speed intervals used for mapping from 95% warm idle speed to 90% maximum test speed. You may stop mapping at the highest speed above maximum power at which 50% of maximum power occurs. We refer to the speed at 50% power as the check point speed as described in paragraph (b)(5)(iii) of this section. Stabilize engine speed at each setpoint, targeting a torque value at 70% of peak torque at that speed without hybrid-assist. Make sure the engine is fully warmed up and the RESS state of charge is within the normal operating range. Snap the operator demand to maximum, operate the engine there for at least 10 seconds, and record the 3-second rolling average feedback speed and torque at 1 Hz or higher. Record the peak 3-second average torque and 3-second average speed at that point. Use linear interpolation to determine intermediate speeds and torques. Follow § 1065.610(a) to calculate the maximum test speed. Verify that the measured maximum test speed falls in the range from 92 to 108% of the estimated maximum test speed. If the measured maximum test speed does not fall in this range, rerun the map using the measured value of maximum test speed.


(h) Other mapping procedures. You may use other mapping procedures if you believe the procedures specified in this section are unsafe or unrepresentative for your engine. Any alternate techniques you use must satisfy the intent of the specified mapping procedures, which is to determine the maximum available torque at all engine speeds that occur during a duty cycle. Identify any deviations from this section’s mapping procedures when you submit data to us.


[73 FR 37315, June 30, 2008, as amended at 73 FR 59330, Oct. 8, 2008; 75 FR 23042, Apr. 30, 2010; 76 FR 57448, Sept. 15, 2011; 79 FR 23773, Apr. 28, 2014; 81 FR 74169, Oct. 25, 2016; 86 FR 34545, June 29, 2021]


§ 1065.512 Duty cycle generation.

(a) Generate duty cycles according to this section if the standard-setting part requires engine mapping to generate a duty cycle for your engine configuration. The standard-setting part generally defines applicable duty cycles in a normalized format. A normalized duty cycle consists of a sequence of paired values for speed and torque or for speed and power.


(b) Transform normalized values of speed, torque, and power using the following conventions:


(1) Engine speed for variable-speed engines. For variable-speed engines, normalized speed may be expressed as a percentage between warm idle speed, fnidle, and maximum test speed, fntest, or speed may be expressed by referring to a defined speed by name, such as “warm idle,” “intermediate speed,” or “A,” “B,” or “C” speed. Section 1065.610 describes how to transform these normalized values into a sequence of reference speeds, fnref. Running duty cycles with negative or small normalized speed values near warm idle speed may cause low-speed idle governors to activate and the engine torque to exceed the reference torque even though the operator demand is at a minimum. In such cases, we recommend controlling the dynamometer so it gives priority to follow the reference torque instead of the reference speed and let the engine govern the speed. Note that the cycle-validation criteria in § 1065.514 allow an engine to govern itself. This allowance permits you to test engines with enhanced-idle devices and to simulate the effects of transmissions such as automatic transmissions. For example, an enhanced-idle device might be an idle speed value that is normally commanded only under cold-start conditions to quickly warm up the engine and aftertreatment devices. In this case, negative and very low normalized speeds will generate reference speeds below this higher enhanced-idle speed. You may do either of the following with when using enhanced-idle devices:


(i) Control the dynamometer so it gives priority to follow the reference torque, controlling the operator demand so it gives priority to follow reference speed and let the engine govern the speed when the operator demand is at minimum.


(ii) While running an engine where the electronic control module broadcasts an enhanced-idle speed that is above the denormalized speed, use the broadcast speed as the reference speed. Use these new reference points for duty-cycle validation. This does not affect how you determine denormalized reference torque in paragraph (b)(2) of this section.


(2) Engine torque for variable-speed engines. For variable-speed engines, normalized torque is expressed as a percentage of the mapped torque at the corresponding reference speed. Section 1065.610 describes how to transform normalized torques into a sequence of reference torques, Tref. Section 1065.610 also describes special requirements for modifying transient duty cycles for variable-speed engines intended primarily for propulsion of a vehicle with an automatic transmission. Section 1065.610 also describes under what conditions you may command Tref greater than the reference torque you calculated from a normalized duty cycle, which permits you to command Tref values that are limited by a declared minimum torque. For any negative torque commands, command minimum operator demand and use the dynamometer to control engine speed to the reference speed, but if reference speed is so low that the idle governor activates, we recommend using the dynamometer to control torque to zero, CITT, or a declared minimum torque as appropriate. Note that you may omit power and torque points during motoring from the cycle-validation criteria in § 1065.514. Also, use the maximum mapped torque at the minimum mapped speed as the maximum torque for any reference speed at or below the minimum mapped speed.

7


(3) Engine torque for constant-speed engines. For constant-speed engines, normalized torque is expressed as a percentage of maximum test torque, Ttest. Section 1065.610 describes how to transform normalized torques into a sequence of reference torques, Tref. Section 1065.610 also describes under what conditions you may command Tref greater than the reference torque you calculated from the normalized duty cycle. This provision permits you to command Tref values that are limited by a declared minimum torque.


(4) Engine power. For all engines, normalized power is expressed as a percentage of mapped power at maximum test speed, fntest, unless otherwise specified by the standard-setting part. Section 1065.610 describes how to transform these normalized values into a sequence of reference powers, Pref. Convert these reference powers to corresponding torques for operator demand and dynamometer control. Use the reference speed associated with each reference power point for this conversion. As with cycles specified with % torque, issue torque commands more frequently and linearly interpolate between these reference torque values generated from cycles with % power.


(5) Ramped-modal cycles. For ramped-modal cycles, generate reference speed and torque values at 1 Hz and use this sequence of points to run the cycle and validate it in the same manner as with a transient cycle. During the transition between modes, linearly ramp the denormalized reference speed and torque values between modes to generate reference points at 1 Hz. Do not linearly ramp the normalized reference torque values between modes and then denormalize them. Do not linearly ramp normalized or denormalized reference power points. These cases will produce nonlinear torque ramps in the denormalized reference torques. If the speed and torque ramp runs through a point above the engine’s torque curve, continue to command the reference torques and allow the operator demand to go to maximum. Note that you may omit power and either torque or speed points from the cycle-validation criteria under these conditions as specified in § 1065.514.


(c) For variable-speed engines, command reference speeds and torques sequentially to perform a duty cycle. Issue speed and torque commands at a frequency of at least 5 Hz for transient cycles and at least 1 Hz for steady-state cycles (i.e., discrete-mode and ramped-modal). Linearly interpolate between the 1 Hz reference values specified in the standard-setting part to determine more frequently issued reference speeds and torques. During an emission test, record the feedback speeds and torques at a frequency of at least 5 Hz for transient cycles and at least 1 Hz for steady-state cycles. For transient cycles, you may record the feedback speeds and torques at lower frequencies (as low as 1 Hz) if you record the average value over the time interval between recorded values. Calculate the average values based on feedback values updated at a frequency of at least 5 Hz. Use these recorded values to calculate cycle-validation statistics and total work.


(d) For constant-speed engines, operate the engine with the same production governor you used to map the engine in § 1065.510 or simulate the in-use operation of a governor the same way you simulated it to map the engine in § 1065.510. Command reference torque values sequentially to perform a duty cycle. Issue torque commands at a frequency of at least 5 Hz for transient cycles and at least 1 Hz for steady-state cycles (i.e., discrete-mode, ramped-modal). Linearly interpolate between the 1 Hz reference values specified in the standard-setting part to determine more frequently issued reference torque values. During an emission test, record the feedback speeds and torques at a frequency of at least 5 Hz for transient cycles and at least 1 Hz for steady-state cycles. For transient cycles, you may record the feedback speeds and torques at lower frequencies (as low as 1 Hz) if you record the average value over the time interval between recorded values. Calculate the average values based on feedback values updated at a frequency of at least 5 Hz. Use these recorded values to calculate cycle-validation statistics and total work.


(e) You may perform practice duty cycles with the test engine to optimize operator demand and dynamometer controls to meet the cycle-validation criteria specified in § 1065.514.


[73 FR 37317, June 30, 2008, as amended at 79 FR 23774, Apr. 28, 2014; 86 FR 34546, June 29, 2021]


§ 1065.514 Cycle-validation criteria for operation over specified duty cycles.

Validate the execution of your duty cycle according to this section unless the standard-setting part specifies otherwise. This section describes how to determine if the engine’s operation during the test adequately matched the reference duty cycle. This section applies only to speed, torque, and power from the engine’s primary output shaft. Other work inputs and outputs are not subject to cycle-validation criteria. You must compare the original reference duty cycle points generated as described in § 1065.512 to the corresponding feedback values recorded during the test. You may compare reference duty cycle points recorded during the test to the corresponding feedback values recorded during the test as long as the recorded reference values match the original points generated in § 1065.512. The number of points in the validation regression are based on the number of points in the original reference duty cycle generated in § 1065.512. For example if the original cycle has 1199 reference points at 1 Hz, then the regression will have up to 1199 pairs of reference and feedback values at the corresponding moments in the test. The feedback speed and torque signals may be filtered – either in real-time while the test is run or afterward in the analysis program. Any filtering that is used on the feedback signals used for cycle validation must also be used for calculating work. Feedback signals for control loops may use different filtering.


(a) Testing performed by EPA. Our tests must meet the specifications of paragraph (f) of this section, unless we determine that failing to meet the specifications is related to engine performance rather than to shortcomings of the dynamometer or other laboratory equipment.


(b) Testing performed by manufacturers. Emission tests that meet the specifications of paragraph (f) of this section satisfy the standard-setting part’s requirements for duty cycles. You may ask to use a dynamometer or other laboratory equipment that cannot meet those specifications. We will approve your request as long as using the alternate equipment does not adversely affect your ability to show compliance with the applicable emission standards.


(c) Time-alignment. Because time lag between feedback values and the reference values may bias cycle-validation results, you may advance or delay the entire sequence of feedback engine speed and torque pairs to synchronize them with the reference sequence. If you advance or delay feedback signals for cycle validation, you must make the same adjustment for calculating work. You may use linear interpolation between successive recorded feedback signals to time shift an amount that is a fraction of the recording period.


(d) Omitting additional points. Besides engine cranking, you may omit additional points from cycle-validation statistics as described in the following table:


Table 1 of § 1065.514 – Permissible Criteria for Omitting Points From Duty-Cycle Regression Statistics

When operator demand is at its . . .
you may omit . . .
if . . .
For reference duty cycles that are specified in terms of speed and torque (fnref, Tref)
minimumpower and torqueTref
minimumpower and speedfnref = 0% (idle speed) and Tref = 0% (idle torque) and Tref − (2% · Tmax mapped) Tref + (2% · Tmax mapped).
minimumpower and either torque or speedfn >fnref or T >Tref but not if fn >(fnref · 102%) and T >Tref ± (2% · Tmax mapped).
maximumpower and either torque or speedfn fnref or T Tref but not if fn fnref · 98%) and T Tref − (2% · Tmax mapped).
For reference duty cycles that are specified in terms of speed and power (fnref, Pref)
minimumpower and torquePref
minimumpower and speedfnref = 0% (idle speed) and Pref = 0% (idle power) and Pref − (2% · Pmax mapped)

P

ref + (2% · Pmax mapped).
minimumpower and either torque or speedfn >fnref or P >Pref but not if fn >(fnref · 102%) and P >Pref + (2% · Pmax mapped).
maximumpower and either torque or speedfn fnref or P Pref but not if fn fnref · 98%) and P Pref − (2% · Pmax mapped).

(e) Statistical parameters. Use the remaining points to calculate regression statistics for a floating intercept as described in § 1065.602. Round calculated regression statistics to the same number of significant digits as the criteria to which they are compared. Refer to Table 2 of this section for the default criteria and refer to the standard-setting part to determine if there are other criteria for your engine. Calculate the following regression statistics:


(1) Slopes for feedback speed, a1fn, feedback torque, a1T, and feedback power a1P.


(2) Intercepts for feedback speed, a0fn, feedback torque, a0T, and feedback power a0P.


(3) Standard error of the estimate for feedback speed, SEEfn, feedback torque, SEET, and feedback power SEEP.


(4) Coefficients of determination for feedback speed, r
2fn, feedback torque, r
2T, and feedback power r
2P.


(f) Cycle-validation criteria. Unless the standard-setting part specifies otherwise, use the following criteria to validate a duty cycle:


(1) For variable-speed engines, apply all the statistical criteria in Table 2 of this section.


(2) For constant-speed engines, apply only the statistical criteria for torque in Table 2 of this section.


(3) For discrete-mode steady-state testing, apply cycle-validation criteria by treating the sampling periods from the series of test modes as a continuous sampling period, analogous to ramped-modal testing and apply statistical criteria as described in paragraph (f)(1) or (2) of this section. Note that if the gaseous and particulate test intervals are different periods of time, separate validations are required for the gaseous and particulate test intervals. Table 2 follows:


Table 2 of § 1065.514 – Default Statistical Criteria for Validating Duty Cycles

Parameter
Speed
Torque
Power
Slope, a10.950 ≤ a1 ≤ 1.0300.830 ≤ a1 ≤ 1.0300.830 ≤ a1 ≤ 1.030.
Absolute value of intercept, |a0|≤ 10% of warm idle≤ 2% of maximum mapped torque≤ 2% of maximum mapped power.
Standard error of the estimate, SEE≤ 5% of maximum test speed≤ 10% of maximum mapped torque≤ 10% of maximum mapped power.
Coefficient of determination, r2≥ 0.970≥ 0.850≥ 0.910.

[73 FR 37318, June 30, 2008, as amended at 73 FR 59330, Oct. 8, 2008; 75 FR 23042, Apr. 30, 2010; 76 FR 57450, Sept. 15, 2011; 86 FR 34546, June 29, 2021]


§ 1065.516 Sample system decontamination and preconditioning.

This section describes how to manage the impact of sampling system contamination on emission measurements. Use good engineering judgment to determine if you should decontaminate and precondition your sampling system. Contamination occurs when a regulated pollutant accumulates in the sample system in a high enough concentration to cause release during emission tests. Hydrocarbons and PM are generally the only regulated pollutants that contaminate sample systems. Note that although this section focuses on avoiding excessive contamination of sampling systems, you must also use good engineering judgment to avoid loss of sample to a sampling system that is too clean. The goal of decontamination is not to perfectly clean the sampling system, but rather to achieve equilibrium between the sampling system and the exhaust so emission components are neither lost to nor entrained from the sampling system.


(a) You may perform contamination checks as follows to determine if decontamination is needed:


(1) For dilute exhaust sampling systems, measure hydrocarbon and PM emissions by sampling with the CVS dilution air turned on, without an engine connected to it.


(2) For raw analyzers and systems that collect PM samples from raw exhaust, measure hydrocarbon and PM emissions by sampling purified air or nitrogen.


(3) When calculating zero emission levels, apply all applicable corrections, including initial THC contamination and diluted (CVS) exhaust background corrections.


(4) Sampling systems are considered contaminated if either of the following conditions applies:


(i) The hydrocarbon emission level exceeds 2% of the flow-weighted mean concentration expected at the HC standard.


(ii) The PM emission level exceeds 5% of the level expected at the standard and exceeds 20 µg on a 47 mm PTFE membrane filter.


(b) To precondition or decontaminate sampling systems, use the following recommended procedure or select a different procedure using good engineering judgment:


(1) Start the engine and use good engineering judgment to operate it at a condition that generates high exhaust temperatures at the sample probe inlet.


(2) Operate any dilution systems at their expected flow rates. Prevent aqueous condensation in the dilution systems.


(3) Operate any PM sampling systems at their expected flow rates.


(4) Sample PM for at least 10 min using any sample media. You may change sample media at any time during this process and you may discard them without weighing them.


(5) You may purge any gaseous sampling systems that do not require decontamination during this procedure.


(6) You may conduct calibrations or verifications on any idle equipment or analyzers during this procedure.


(c) If your sampling system is still contaminated following the procedures specified in paragraph (b) of this section, you may use more aggressive procedures to decontaminate the sampling system, as long as the decontamination does not cause the sampling system to be cleaner than an equilibrium condition such that artificially low emission measurements may result.


[79 FR 23774, Apr. 28, 2014]


§ 1065.518 Engine preconditioning.

(a) This section applies for engines where measured emissions are affected by prior operation, such as with a diesel engine that relies on urea-based selective catalytic reduction. Note that § 1065.520(e) allows you to run practice duty cycles before the emission test; this section recommends how to do this for the purpose of preconditioning the engine. Follow the standard-setting part if it specifies a different engine preconditioning procedure.


(b) The intent of engine preconditioning is to manage the representativeness of emissions and emission controls over the duty cycle and to reduce bias.


(c) This paragraph (c) specifies the engine preconditioning procedures for different types of duty cycles. You must identify the amount of preconditioning before starting to precondition. You must run the predefined amount of preconditioning. You may measure emissions during preconditioning. You may not abort an emission test sequence based on emissions measured during preconditioning. For confirmatory testing, you may ask us to run more preconditioning cycles than we specify in this paragraph (c); we will agree to this only if you show that additional preconditioning cycles are required to meet the intent of paragraph (b) of this section, for example, due to the effect of DPF regeneration on NH3 storage in the SCR catalyst. Perform preconditioning as follows, noting that the specific cycles for preconditioning are the same ones that apply for emission testing:


(1) Cold-start transient cycle. Precondition the engine by running at least one hot-start transient cycle. We will precondition your engine by running two hot-start transient cycles. Immediately after completing each preconditioning cycle, shut down the engine and complete the engine-off soak period. Immediately after completing the last preconditioning cycle, shut down the engine and begin the cold soak as described in § 1065.530(a)(1).


(2) Hot-start transient cycle. Precondition the engine by running at least one hot-start transient cycle. We will precondition your engine by running two hot-start transient cycles. Immediately after completing each preconditioning cycle, shut down the engine, then start the next cycle (including the emission test) as soon as practical. For any repeat cycles, start the next cycle within 60 seconds after completing the last preconditioning cycle (this is optional for manufacturer testing).


(3) Hot-running transient cycle. Precondition the engine by running at least one hot-running transient cycle. We will precondition your engine by running two hot-running transient cycles. Do not shut down the engine between cycles. Immediately after completing each preconditioning cycle, start the next cycle (including the emission test) as soon as practical. For any repeat cycles, start the next cycle within 60 seconds after completing the last preconditioning cycle (this is optional for manufacturer testing). See § 1065.530(a)(1)(iii) for additional instructions if the cycle begins and ends under different operating conditions.


(4) Discrete-mode cycle for steady-state testing. Precondition the engine at the same operating condition as the next test mode, unless the standard-setting part specifies otherwise. We will precondition your engine by running it for at least five minutes before sampling.


(5) Ramped-modal cycle for steady-state testing. Precondition the engine by running at least the second half of the ramped-modal cycle, based on the number of test modes. For example, for the five-mode cycle specified in 40 CFR 1039.505(b)(1), the second half of the cycle consists of modes three through five. We will precondition your engine by running one complete ramped-modal cycle. Do not shut down the engine between cycles. Immediately after completing each preconditioning cycle, start the next cycle (including the emission test) as soon as practical. For any repeat cycles, start the next cycle within 60 seconds after completing the last preconditioning cycle. See § 1065.530(a)(1)(iii) for additional instructions if the cycle begins and ends under different operating conditions.


(d) You may conduct calibrations or verifications on any idle equipment or analyzers during engine preconditioning.


[79 FR 23774, Apr. 28, 2014]


§ 1065.520 Pre-test verification procedures and pre-test data collection.

(a) For tests in which you measure PM emissions, follow the procedures for PM sample preconditioning and tare weighing according to § 1065.590.


(b) Unless the standard-setting part specifies different tolerances, verify at some point before the test that ambient conditions are within the tolerances specified in this paragraph (b). For purposes of this paragraph (b), “before the test” means any time from a point just prior to engine starting (excluding engine restarts) to the point at which emission sampling begins.


(1) Ambient temperature of (20 to 30) °C. See § 1065.530(j) for circumstances under which ambient temperatures must remain within this range during the test.


(2) Atmospheric pressure of (80.000 to 103.325) kPa and within ±5 kPa of the value recorded at the time of the last engine map. You are not required to verify atmospheric pressure prior to a hot start test interval for testing that also includes a cold start.


(3) Dilution air conditions as specified in § 1065.140, except in cases where you preheat your CVS before a cold start test. We recommend verifying dilution air conditions just prior to the start of each test interval.


(c) You may test engines at any intake-air humidity, and we may test engines at any intake-air humidity.


(d) Verify that auxiliary-work inputs and outputs are configured as they were during engine mapping, as described in § 1065.510(a).


(e) You may perform a final calibration of the speed, torque, and proportional-flow control systems, which may include performing practice duty cycles (or portions of duty cycles). This may be done in conjunction with the preconditioning in § 1065.518.


(f) Verify the amount of nonmethane hydrocarbon contamination in the exhaust and background HC sampling systems within 8 hours before the start of the first test interval of each duty-cycle sequence for laboratory tests. You may verify the contamination of a background HC sampling system by reading the last bag fill and purge using zero gas. For any NMHC measurement system that involves separately measuring CH4 and subtracting it from a THC measurement or for any CH4 measurement system that uses an NMC, verify the amount of THC contamination using only the THC analyzer response. There is no need to operate any separate CH4 analyzer for this verification; however, you may measure and correct for THC contamination in the CH4 sample path for the cases where NMHC is determined by subtracting CH4 from THC or, where CH4 is determined, using an NMC as configured in § 1065.365(d), (e), and (f); and using the calculations in § 1065.660(b)(2). Perform this verification as follows:


(1) Select the HC analyzer range for measuring the flow-weighted mean concentration expected at the HC standard.


(2) Zero the HC analyzer at the analyzer zero or sample port. Note that FID zero and span balance gases may be any combination of purified air or purified nitrogen that meets the specifications of § 1065.750. We recommend FID analyzer zero and span gases that contain approximately the flow-weighted mean concentration of O2 expected during testing.


(3) Span the HC analyzer using span gas introduced at the analyzer span or sample port. Span on a carbon number basis of one (C1). For example, if you use a C3H8 span gas of concentration 200 µmol/mol, span the FID to respond with a value of 600 µmol/mol.


(4) Overflow zero gas at the HC probe inlet or into a tee near the probe outlet.


(5) Measure the THC concentration in the sampling and background systems as follows:


(i) For continuous sampling, record the mean THC concentration as overflow zero gas flows.


(ii) For batch sampling, fill the sample medium (e.g., bag) and record its mean THC concentration.


(iii) For the background system, record the mean THC concentration of the last fill and purge.


(6) Record this value as the initial THC concentration, xTHC[THC-FID]init, and use it to correct measured values as described in § 1065.660.


(7) You may correct the measured initial THC concentration for drift as follows:


(i) For batch and continuous HC analyzers, after determining the initial THC concentration, flow zero gas to the analyzer zero or sample port. When the analyzer reading is stable, record the mean analyzer value.


(ii) Flow span gas to the analyzer span or sample port. When the analyzer reading is stable, record the mean analyzer value.


(iii) Use mean analyzer values from paragraphs (f)(2), (f)(3), (f)(7)(i), and (f)(7)(ii) of this section to correct the initial THC concentration recorded in paragraph (f)(6) of this section for drift, as described in § 1065.550.


(8) If any of the xTHC[THC-FID]init values exceed the greatest of the following values, determine the source of the contamination and take corrective action, such as purging the system during an additional preconditioning cycle or replacing contaminated portions:


(i) 2% of the flow-weighted mean concentration expected at the HC (THC or NMHC) standard.


(ii) 2% of the flow-weighted mean concentration of HC (THC or NMHC) measured during testing.


(iii) 2 µmol/mol.


(9) If corrective action does not resolve the deficiency, you may request to use the contaminated system as an alternate procedure under § 1065.10.


[79 FR 23775, Apr. 28, 2014]


§ 1065.525 Engine starting, restarting, and shutdown.

(a) For test intervals that require emission sampling during engine starting, start the engine using one of the following methods:


(1) Start the engine as recommended in the owners manual using a production starter motor or air-start system and either an adequately charged battery, a suitable power supply, or a suitable compressed air source.


(2) Use the dynamometer to start the engine. To do this, motor the engine within ±25% of its typical in-use cranking speed. Stop cranking within 1 second of starting the engine.


(3) In the case of hybrid engines, activate the system such that the engine will start when its control algorithms determine that the engine should provide power instead of or in addition to power from the RESS. Unless we specify otherwise, engine starting throughout this part generally refers to this step of activating the system on hybrid engines, whether or not that causes the engine to start running.


(b) If the engine does not start after 15 seconds of cranking, stop cranking and determine why the engine failed to start, unless the owners manual or the service-repair manual describes the longer cranking time as normal.


(c) Respond to engine stalling with the following steps:


(1) If the engine stalls during warm-up before emission sampling begins, restart the engine and continue warm-up.


(2) If the engine stalls during preconditioning before emission sampling begins, restart the engine and restart the preconditioning sequence.


(3) Void the entire test if the engine stalls at any time after emission sampling begins, except as described in § 1065.526. If you do not void the entire test, you must void the individual test mode or test interval in which the engine stalls.


(d) Shut down the engine according to the manufacturer’s specifications.


[73 FR 37320, June 30, 2008, as amended at 75 FR 68463, Nov. 8, 2010; 76 FR 57451, Sept. 15, 2011]


§ 1065.526 Repeating of void modes or test intervals.

(a) Test modes and test intervals can be voided because of instrument malfunction, engine stalling, emissions exceeding instrument ranges, and other unexpected deviations from the specified procedures. This section specifies circumstances for which a test mode or test interval can be repeated without repeating the entire test.


(b) This section is intended to result in replicate test modes and test intervals that are identical to what would have occurred if the cause of the voiding had not occurred. It does not allow you to repeat test modes or test intervals in any circumstances that would be inconsistent with good engineering judgment. For example, the procedures specified here for repeating a mode or interval may not apply for certain engines that include hybrid energy storage features or emission controls that involve physical or chemical storage of pollutants. This section applies for circumstances in which emission concentrations exceed the analyzer range only if it is due to operator error or analyzer malfunction. It does not apply for circumstances in which the emission concentrations exceed the range because they were higher than expected.


(c) If one of the modes of a discrete-mode duty cycle is voided while running the duty cycle as provided in this section, you may void the results for that individual mode and continue the duty cycle as follows:


(1) If the engine has stalled or been shut down, restart the engine.


(2) Use good engineering judgment to restart the duty cycle using the appropriate steps in § 1065.530(b).


(3) Stabilize the engine by operating it at the mode at which the duty cycle was interrupted and continue with the duty cycle as specified in the standard-setting part.


(d) If an individual mode of a discrete-mode duty cycle sequence is voided after running the full duty cycle, you may void results for that mode and repeat testing for that mode as follows:


(1) Use good engineering judgment to restart the test sequence using the appropriate steps in § 1065.530(b).


(2) Stabilize the engine by operating it at that mode.


(3) Sample emissions over an appropriate test interval.


(4) If you sampled gaseous and PM emissions over separate test intervals for a voided mode, you must void both test intervals and repeat sampling of both gaseous and PM emissions for that mode.


(e) If a transient or ramped-modal cycle test interval is voided as provided in this section, you may repeat the test interval as follows:


(1) Use good engineering judgment to restart (as applicable) and precondition the engine to the same condition as would apply for normal testing. This may require you to complete the voided test interval. For example, you may generally repeat a hot-start test of a heavy-duty highway engine after completing the voided hot-start test and allowing the engine to soak for 20 minutes.


(2) Complete the remainder of the test according to the provisions in this subpart.


(f) Keep records from the voided test mode or test interval in the same manner as required for unvoided tests.


[79 FR 23776, Apr. 28, 2014]


§ 1065.530 Emission test sequence.

(a) Time the start of testing as follows:


(1) Perform one of the following if you precondition the engine as described in § 1065.518:


(i) For cold-start duty cycles, shut down the engine. Unless the standard-setting part specifies that you may only perform a natural engine cooldown, you may perform a forced engine cooldown. Use good engineering judgment to set up systems to send cooling air across the engine, to send cool oil through the engine lubrication system, to remove heat from coolant through the engine cooling system, and to remove heat from any exhaust aftertreatment systems. In the case of a forced aftertreatment cooldown, good engineering judgment would indicate that you not start flowing cooling air until the aftertreatment system has cooled below its catalytic activation temperature. For platinum-group metal catalysts, this temperature is about 200 °C. Once the aftertreatment system has naturally cooled below its catalytic activation temperature, good engineering judgment would indicate that you use clean air with a temperature of at least 15 °C, and direct the air through the aftertreatment system in the normal direction of exhaust flow. Do not use any cooling procedure that results in unrepresentative emissions (see § 1065.10(c)(1)). You may start a cold-start duty cycle when the temperatures of an engine’s lubricant, coolant, and aftertreatment systems are all between (20 and 30) °C.


(ii) For hot-start emission measurements, shut down the engine immediately after completing the last preconditioning cycle. For any repeat cycles, start the hot-start transient emission test within 60 seconds after completing the last preconditioning cycle (this is optional for manufacturer testing).


(iii) For testing that involves hot-stabilized emission measurements, such as any steady-state testing with a ramped-modal cycle, start the hot-stabilized emission test within 60 seconds after completing the last preconditioning cycle (the time between cycles is optional for manufacturer testing). If the hot-stabilized cycle begins and ends with different operating conditions, add a linear transition period of 20 seconds between hot-stabilized cycles where you linearly ramp the (denormalized) reference speed and torque values over the transition period. See § 1065.501(c)(2)(i) for discrete-mode cycles.


(2) If you do not precondition the engine as described in § 1065.518, perform one of the following:


(i) For cold-start duty cycles, prepare the engine according to paragraph (a)(1)(i) of this section.


(ii) For hot-start duty cycles, first operate the engine at any speed above peak-torque speed and at (65 to 85) % of maximum mapped power until either the engine coolant, block, or head absolute temperature is within ±2% of its mean value for at least 2 min or until the engine thermostat controls engine temperature. Shut down the engine. Start the duty cycle within 20 min of engine shutdown.


(iii) For testing that involves hot-stabilized emission measurements, bring the engine either to warm idle or the first operating point of the duty cycle. Start the test within 10 min of achieving temperature stability. Determine temperature stability as the point at which the engine thermostat controls engine temperature or as the point at which measured operating temperature has stayed within ±2% of the mean value for at least 2 min based on the following parameters:


(A) Engine coolant or block or head absolute temperatures for water-cooled engines.


(B) Oil sump absolute temperature for air-cooled engines with an oil sump.


(C) Cylinder head absolute temperature or exhaust gas temperature for air-cooled engines with no oil sump.


(b) Take the following steps before emission sampling begins:


(1) For batch sampling, connect clean storage media, such as evacuated bags or tare-weighed filters.


(2) Start all measurement instruments according to the instrument manufacturer’s instructions and using good engineering judgment.


(3) Start dilution systems, sample pumps, cooling fans, and the data-collection system.


(4) Pre-heat or pre-cool heat exchangers in the sampling system to within their operating temperature tolerances for a test.


(5) Allow heated or cooled components such as sample lines, filters, chillers, and pumps to stabilize at their operating temperatures.


(6) Verify that there are no significant vacuum-side leaks according to § 1065.345.


(7) Adjust the sample flow rates to desired levels, using bypass flow, if desired.


(8) Zero or re-zero any electronic integrating devices, before the start of any test interval.


(9) Select gas analyzer ranges. You may automatically or manually switch gas analyzer ranges during a test only if switching is performed by changing the span over which the digital resolution of the instrument is applied. During a test you may not switch the gains of an analyzer’s analog operational amplifier(s).


(10) Zero and span all continuous analyzers using NIST-traceable gases that meet the specifications of § 1065.750. Span FID analyzers on a carbon number basis of one (1), C1. For example, if you use a C3H8 span gas of concentration 200 µmol/mol, span the FID to respond with a value of 600 µmol/mol. Span FID analyzers consistent with the determination of their respective response factors, RF, and penetration fractions, PF, according to § 1065.365.


(11) We recommend that you verify gas analyzer responses after zeroing and spanning by sampling a calibration gas that has a concentration near one-half of the span gas concentration. Based on the results and good engineering judgment, you may decide whether or not to re-zero, re-span, or re-calibrate a gas analyzer before starting a test.


(12) Drain any accumulated condensate from the intake air system before starting a duty cycle, as described in § 1065.125(e)(1). If engine and aftertreatment preconditioning cycles are run before the duty cycle, treat the preconditioning cycles and any associated soak period as part of the duty cycle for the purpose of opening drains and draining condensate. Note that you must close any intake air condensate drains that are not representative of those normally open during in-use operation.


(c) Start and run each test interval as described in this paragraph (c). The procedure varies depending on whether the test interval is part of a discrete-mode cycle, and whether the test interval includes engine starting. Note that the standard-setting part may apply different requirements for running test intervals. For example, 40 CFR part 1033 specifies a different way to perform discrete-mode testing.


(1) For steady-state discrete-mode duty cycles, start the duty cycle with the engine warmed-up and running as described in § 1065.501(c)(2)(i). Run each mode in the sequence specified in the standard-setting part. This will require controlling engine speed, engine load, or other operator demand settings as specified in the standard-setting part. Simultaneously start any electronic integrating devices, continuous data recording, and batch sampling. We recommend that you stabilize the engine for at least 5 minutes for each mode. Once sampling begins, sample continuously for at least 1 minute. Note that longer sample times may be needed for accurately measuring very low emission levels.


(2) For transient and steady-state ramped-modal duty cycles that do not include engine starting, start the test interval with the engine running as soon as practical after completing engine preconditioning. Simultaneously start any electronic integrating devices, continuous data recording, batch sampling, and execution of the duty cycle.


(3) If engine starting is part of the test interval, simultaneously start any electronic integrating devices, continuous data recording, and batch sampling before attempting to start the engine. Initiate the sequence of points in the duty cycle when the engine starts.


(4) For batch sampling systems, you may advance or delay the start and end of sampling at the beginning and end of the test interval to improve the accuracy of the batch sample, consistent with good engineering judgment.


(d) At the end of each test interval, continue to operate all sampling and dilution systems to allow the sampling system’s response time to elapse. Then stop all sampling and recording, including the recording of background samples. Finally, stop any integrating devices and indicate the end of the duty cycle in the recorded data.


(e) Shut down the engine if you have completed testing or if it is part of the duty cycle.


(f) If testing involves another duty cycle after a soak period with the engine off, start a timer when the engine shuts down, and repeat the steps in paragraphs (b) through (e) of this section as needed.


(g) Take the following steps after emission sampling is complete:


(1) For any proportional batch sample, such as a bag sample or PM sample, verify that proportional sampling was maintained according to § 1065.545. Void any samples that did not maintain proportional sampling according to § 1065.545.


(2) Place any used PM samples into covered or sealed containers and return them to the PM-stabilization environment. Follow the PM sample post-conditioning and total weighing procedures in § 1065.595.


(3) As soon as practical after the duty cycle is complete, or during the soak period if practical, perform the following:


(i) Zero and span all batch gas analyzers no later than 30 minutes after the duty cycle is complete, or during the soak period if practical.


(ii) Analyze any conventional gaseous batch samples no later than 30 minutes after the duty cycle is complete, or during the soak period if practical.


(iii) Analyze background samples no later than 60 minutes after the duty cycle is complete.


(iv) Analyze non-conventional gaseous batch samples, such as ethanol (NMHCE) as soon as practical using good engineering judgment.


(4) After quantifying exhaust gases, verify drift as follows:


(i) For batch and continuous gas analyzers, record the mean analyzer value after stabilizing a zero gas to the analyzer. Stabilization may include time to purge the analyzer of any sample gas, plus any additional time to account for analyzer response.


(ii) Record the mean analyzer value after stabilizing the span gas to the analyzer. Stabilization may include time to purge the analyzer of any sample gas, plus any additional time to account for analyzer response.


(iii) Use these data to validate and correct for drift as described in § 1065.550.


(5) If you perform carbon balance error verification, verify carbon balance error as specified in the standard-setting part and § 1065.543. Calculate and report the three carbon balance error quantities for each test interval; carbon mass absolute error for a test interval (εaC), carbon mass rate absolute error for a test interval (εaCrate), and carbon mass relative error for a test interval (εrC). For duty cycles with multiple test intervals, you may calculate and report the composite carbon mass relative error, εrCcomp, for the whole duty cycle. If you report εrCcomp, you must still calculate and report εaC, εaCrate, and εrC for each test interval.


(h) Unless the standard-setting part specifies otherwise, determine whether or not the test meets the cycle-validation criteria in § 1065.514.


(1) If the criteria void the test, you may retest using the same denormalized duty cycle, or you may re-map the engine, denormalize the reference duty cycle based on the new map and retest the engine using the new denormalized duty cycle.


(2) If the criteria void the test for a constant-speed engine only during commands of maximum test torque, you may do the following:


(i) Determine the first and last feedback speeds at which maximum test torque was commanded.


(ii) If the last speed is greater than or equal to 90% of the first speed, the test is void. You may retest using the same denormalized duty cycle, or you may re-map the engine, denormalize the reference duty cycle based on the new map and retest the engine using the new denormalized duty cycle.


(iii) If the last speed is less than 90% of the first speed, reduce maximum test torque by 5%, and proceed as follows:


(A) Denormalize the entire duty cycle based on the reduced maximum test torque according to § 1065.512.


(B) Retest the engine using the denormalized test cycle that is based on the reduced maximum test torque.


(C) If your engine still fails the cycle criteria, reduce the maximum test torque by another 5% of the original maximum test torque.


(D) If your engine fails after repeating this procedure four times, such that your engine still fails after you have reduced the maximum test torque by 20% of the original maximum test torque, notify us and we will consider specifying a more appropriate duty cycle for your engine under the provisions of § 1065.10(c).


(i) [Reserved]


(j) Measure and record ambient temperature, pressure, and humidity, as appropriate. For testing the following engines, you must record ambient temperature continuously to verify that it remains within the pre-test temperature range as specified in § 1065.520(b):


(1) Air-cooled engines.


(2) Engines equipped with auxiliary emission control devices that sense and respond to ambient temperature.


(3) Any other engine for which good engineering judgment indicates this is necessary to remain consistent with § 1065.10(c)(1).


[73 FR 37321, June 30, 2008, as amended at 75 FR 23043, Apr. 30, 2010; 76 FR 57451, Sept. 15, 2011; 79 FR 23776, Apr. 28, 2014; 86 FR 34546, June 29, 2021]


§ 1065.543 Carbon balance error verification.

(a) Carbon balance error verification compares independently calculated quantities of carbon flowing into and out of an engine system. The engine system includes aftertreatment devices as applicable. Calculating carbon intake considers carbon-carrying streams flowing into the system, including intake air, fuel, and optionally DEF or other fluids. Carbon flow out of the system comes from exhaust emission calculations. Note that this verification is not valid if you calculate exhaust molar flow rate using fuel rate and chemical balance as described in § 1065.655(f)(3) because carbon flows into and out of the system are not independent. Use good engineering judgment to ensure that carbon mass in and carbon mass out data signals align.


(b) Perform the carbon balance error verification after emission sampling is complete for a test interval or duty cycle as described in § 1065.530(g). Testing must include measured values as needed to determine intake air, fuel flow, and carbon-related gaseous exhaust emissions. You may optionally account for the flow of carbon-carrying fluids other than intake air and fuel into the system. Perform carbon balance error verification as follows:


(1) Calculate carbon balance error quantities as described in § 1065.643. The three quantities for individual test intervals are carbon mass absolute error, εaC, carbon mass rate absolute error, εaCrate, and carbon mass relative error, εrC. Determine εaC, εaCrate, and εrC for all test intervals. You may determine composite carbon mass relative error, εrCcomp, as a fourth quantity that optionally applies for duty cycles with multiple test intervals.


(2) You meet verification criteria for an individual test interval if the absolute values of carbon balance error quantities are at or below the following limit values:


(i) Calculate the carbon mass absolute error limit, LεaC, in grams to three decimal places for comparision to the absolute value of ε;aC, using the following equation:




Where:

c = power-specific carbon mass absolute error coefficient = 0.007 g/kW.

Pmax = maximum power from the engine map generated according to § 1065.510. If measured

Pmax is not available, use a manufacturer-declared value for Pmax.

Example:

c = 0.007 g/kW

Pmax = 230.0 kW

Lo
aC
= 0.007 · 230.0 = 1.610 g

(ii) Calculate the carbon mass rate absolute error limit, LεaCrate, in grams per hour to three decimal places for comparison to the absolute value of εaCrate, using the following equation:




Where:

d = power-specific carbon mass rate absolute error coefficient = 0.31 g/(kW · hr).

Pmax = maximum power from the engine map generated according to § 1065.510. If measured

Pmax is not available, use a manufacturer-declared value for Pmax.

Example:

d = 0.31 g/(kW·hr)

Pmax = 230.0 kW

LεaCrate = 71.300 g/hr

(iii) The carbon mass relative error limit,


LεrC, is 0.020 for comparision to the absolute value of εrC, and optionally the absolute value of εrCcomp.


(c) A failed carbon balance error verification might indicate one or more problems requiring corrective action, as follows:


Table 1 of § 1065.543 – Troubleshooting Guide for Carbon Balance Error Verification

Area of concern
Problem
Recommended corrective action
Gas analyzer systemIncorrect analyzer calibrationCalibrate NDIR and THC analyzers.
Incorrect time alignment between flow and concentration dataDetermine transformation time, t50, for continuous gas analyzers and time-align flow and concentration data as described in § 1065.650(c)(2)(i).
Problems with the sample systemInspect sample system components such as sample lines, filters, chillers, and pumps for leaks, operating temperature, and contamination.
Fuel flow measurementZero shift of fuel flow rate meterPerform an in-situ zero adjustment.
Change in fuel flow meter calibrationCalibrate the fuel flow meter as described in § 1065.320.
Incorrect time alignment of fuel flow dataVerify alignment of carbon mass in and carbon mass out data streams.
Short sampling periodsFor test intervals with varying duration, such as discrete-mode steady-state duty cycles, make the test intervals longer to improve accuracy when measuring low fuel flow rates.
Fluctuations in the fuel conditioning systemImprove stability of the fuel temperature and pressure conditioning system to improve accuracy when measuring low fuel flow rates.
Dilute testing using a CVS systemLeaksInspect exhaust system and CVS tunnel, connections, and fasteners. Repair or replace components as needed. A leak in the exhaust transfer tube to the CVS may result in negative values for carbon balance error.
Poor mixingPerform the verification related to mixing in § 1065.341(f).
Change in CVS calibrationCalibrate the CVS flow meter as described in § 1065.340.
Flow meter entrance effectsInspect the CVS tunnel to determine whether entrance effects from the piping configuration upstream of the flow meter adversely affect flow measurement.
Other problems with the CVS or sampling verification hardware or softwareInspect hardware and software for the CVS system and CVS verification system for discrepancies.
Raw testing using intake air flow measurement or direct exhaust flow measurementLeaksInspect intake air and exhaust systems, connections, fasteners. Repair or replace components as needed.
Zero shift of intake air flow rate meterPerform an in-situ zero adjustment.
Change in intake air flow meter calibrationCalibrate the intake air flow meter as described in § 1065.325.
Zero shift of exhaust flow rate meterPerform an in-situ zero adjustment.
Change in exhaust flow meter calibrationCalibrate the exhaust flow meter as described in § 1065.330.
Flow meter entrance effectsInspect intake air and exhaust systems to determine whether entrance effects from the piping configuration upstream and downstream of the intake air flow meter or the exhaust flow meter adversely affect flow measurement.
Other problems with the intake air flow and exhaust flow measurement hardware or softwareLook for discrepancies in the hardware and software for measuring intake air flow and exhaust flow.
Poor mixingEnsure that all streams are well mixed.
Accuracy of fluid propertiesInaccurate fluid propertiesIf defaults are used, use measured values. If measured values are used, verify fluid property determination.

[86 FR 34547, June 29, 2021]


§ 1065.545 Verification of proportional flow control for batch sampling.

For any proportional batch sample such as a bag or PM filter, demonstrate that proportional sampling was maintained using one of the following, noting that you may omit up to 5% of the total number of data points as outliers:


(a) For any pair of flow rates, use recorded sample and total flow rates. Total flow rate means the raw exhaust flow rate for raw exhaust sampling and the dilute exhaust flow rate for CVS sampling, or their 1 Hz means with the statistical calculations in § 1065.602 forcing the intercept through zero. Determine the standard error of the estimate, SEE, of the sample flow rate versus the total flow rate. For each test interval, demonstrate that SEE was less than or equal to 3.5% of the mean sample flow rate.


(b) For any pair of flow rates, use recorded sample and total flow rates. Total flow rate means the raw exhaust flow rate for raw exhaust sampling and the dilute exhaust flow rate for CVS sampling, or their 1 Hz means to demonstrate that each flow rate was constant within ±2.5% of its respective mean or target flow rate. You may use the following options instead of recording the respective flow rate of each type of meter:


(1) Critical-flow venturi option. For critical-flow venturis, you may use recorded venturi-inlet conditions or their 1 Hz means. Demonstrate that the flow density at the venturi inlet was constant within ±2.5% of the mean or target density over each test interval. For a CVS critical-flow venturi, you may demonstrate this by showing that the absolute temperature at the venturi inlet was constant within ±4% of the mean or target absolute temperature over each test interval.


(2) Positive-displacement pump option. You may use recorded pump-inlet conditions or their 1 Hz means. Demonstrate that the flow density at the pump inlet was constant within ±2.5% of the mean or target density over each test interval. For a CVS pump, you may demonstrate this by showing that the absolute temperature at the pump inlet was constant within ±2% of the mean or target absolute temperature over each test interval.


(c) Using good engineering judgment, demonstrate with an engineering analysis that the proportional-flow control system inherently ensures proportional sampling under all circumstances expected during testing. For example, you might use CFVs for both sample flow and total dilute exhaust (CVS) flow and demonstrate that they always have the same inlet pressures and temperatures and that they always operate under critical-flow conditions.


[79 FR 23777, Apr. 28, 2014, as amended at 86 FR 34548, June 29, 2021]


§ 1065.546 Verification of minimum dilution ratio for PM batch sampling.

Use continuous flows and/or tracer gas concentrations for transient and ramped-modal cycles to verify the minimum dilution ratios for PM batch sampling as specified in § 1065.140(e)(2) over the test interval. You may use mode-average values instead of continuous measurements for discrete mode steady-state duty cycles. Determine the minimum primary and minimum overall dilution ratios using one of the following methods (you may use a different method for each stage of dilution):


(a) Determine minimum dilution ratio based on molar flow data. This involves determination of at least two of the following three quantities: raw exhaust flow (or previously diluted flow), dilution air flow, and dilute exhaust flow. You may determine the raw exhaust flow rate based on the measured intake air or fuel flow rate and the raw exhaust chemical balance terms as given in § 1065.655(f). You may determine the raw exhaust flow rate based on the measured intake air and dilute exhaust molar flow rates and the dilute exhaust chemical balance terms as given in § 1065.655(g). You may alternatively estimate the molar raw exhaust flow rate based on intake air, fuel rate measurements, and fuel properties, consistent with good engineering judgment.


(b) Determine minimum dilution ratio based on tracer gas (e.g., CO2) concentrations in the raw (or previously diluted) and dilute exhaust corrected for any removed water.


(c) Use good engineering judgment to develop your own method of determining dilution ratios.


[75 FR 23043, Apr. 30, 2010, as amended at 76 FR 57451, Sept. 15, 2011; 79 FR 23778, Apr. 28, 2014; 81 FR 74169, Oct. 25, 2016]


§ 1065.550 Gas analyzer range verification and drift verification.

(a) Range verification. If an analyzer operated above 100% of its range at any time during the test, perform the following steps:


(1) For batch sampling, re-analyze the sample using the lowest analyzer range that results in a maximum instrument response below 100%. Report the result from the lowest range from which the analyzer operates below 100% of its range.


(2) For continuous sampling, repeat the entire test using the next higher analyzer range. If the analyzer again operates above 100% of its range, repeat the test using the next higher range. Continue to repeat the test until the analyzer always operates at less than 100% of its range.


(b) Drift verification. Gas analyzer drift verification is required for all gaseous exhaust constituents for which an emission standard applies. It is also required for CO2 even if there is no CO2 emission standard. It is not required for other gaseous exhaust constituents for which only a reporting requirement applies (such as CH4 and N2O).


(1) Verify drift using one of the following methods:


(i) For regulated exhaust constituents determined from the mass of a single component, perform drift verification based on the regulated constituent. For example, when NOX mass is determined with a dry sample measured with a CLD and the removed water is corrected based on measured CO2, CO, THC, and NOX concentrations, you must verify the calculated NOX value.


(ii) For regulated exhaust constituents determined from the masses of multiple subcomponents, perform the drift verification based on either the regulated constituent or all the mass subcomponents. For example, when NOX is measured with separate NO and NO2 analyzers, you must verify either the NOX value or both the NO and NO2 values.


(iii) For regulated exhaust constituents determined from the concentrations of multiple gaseous emission subcomponents prior to performing mass calculations, perform drift verification on the regulated constituent. You may not verify the concentration subcomponents (e.g., THC and CH4 for NMHC) separately. For example, for NMHC measurements, perform drift verification on NMHC; do not verify THC and CH4 separately.


(2) Drift verification requires two sets of emission calculations. For each set of calculations, include all the constituents in the drift verification. Calculate one set using the data before drift correction and calculate the other set after correcting all the data for drift according to § 1065.672. Note that for purposes of drift verification, you must leave unaltered any negative emission results over a given test interval (i.e., do not set them to zero). These unaltered results are used when verifying either test interval results or composite brake-specific emissions over the entire duty cycle for drift. For each constituent to be verified, both sets of calculations must include the following:


(i) Calculated mass (or mass rate) emission values over each test interval.


(ii) If you are verifying each test interval based on brake-specific values, calculate brake-specific emission values over each test interval.


(iii) If you are verifying over the entire duty cycle, calculate composite brake-specific emission values.


(3) The duty cycle is verified for drift if you satisfy the following criteria:


(i) For each regulated gaseous exhaust constituent, you must satisfy one of the following:


(A) For each test interval of the duty cycle, the difference between the uncorrected and the corrected brake-specific emission values of the regulated constituent must be within ±4% of the uncorrected value or the applicable emissions standard, whichever is greater. Alternatively, the difference between the uncorrected and the corrected emission mass (or mass rate) values of the regulated constituent must be within ±4% of the uncorrected value or the composite work (or power) multiplied by the applicable emissions standard, whichever is greater. For purposes of verifying each test interval, you may use either the reference or actual composite work (or power).


(B) For each test interval of the duty cycle and for each mass subcomponent of the regulated constituent, the difference between the uncorrected and the corrected brake-specific emission values must be within ±4% of the uncorrected value. Alternatively, the difference between the uncorrected and the corrected emissions mass (or mass rate) values must be within ±4% of the uncorrected value.


(C) For the entire duty cycle, the difference between the uncorrected and the corrected composite brake-specific emission values of the regulated constituent must be within ±4% of the uncorrected value or applicable emission standard, whichever is greater.


(D) For the entire duty cycle and for each subcomponent of the regulated constituent, the difference between the uncorrected and the corrected composite brake-specific emission values must be within ±4% of the uncorrected value.


(ii) Where no emission standard applies for CO2, you must satisfy one of the following:


(A) For each test interval of the duty cycle, the difference between the uncorrected and the corrected brake-specific CO2 values must be within ±4% of the uncorrected value; or the difference between the uncorrected and the corrected CO2 mass (or mass rate) values must be within ±4% of the uncorrected value.


(B) For the entire duty cycle, the difference between the uncorrected and the corrected composite brake-specific CO2 values must be within ±4% of the uncorrected value.


(4) If the test is not verified for drift as described in paragraph (b)(1) of this section, you may consider the test results for the duty cycle to be valid only if, using good engineering judgment, the observed drift does not affect your ability to demonstrate compliance with the applicable emission standards. For example, if the drift-corrected value is less than the standard by at least two times the absolute difference between the uncorrected and corrected values, you may consider the data to be verified for demonstrating compliance with the applicable standard.


[79 FR 23778, Apr. 28, 2014]


§ 1065.590 PM sampling media (e.g., filters) preconditioning and tare weighing.

Before an emission test, take the following steps to prepare PM sampling media (e.g., filters) and equipment for PM measurements:


(a) Make sure the balance and PM-stabilization environments meet the periodic verifications in § 1065.390.


(b) Visually inspect unused sample media (e.g., filters) for defects and discard defective media.


(c) To handle PM sampling media (e.g., filters), use electrically grounded tweezers or a grounding strap, as described in § 1065.190.


(d) Place unused sample media (e.g., filters) in one or more containers that are open to the PM-stabilization environment. If you are using filters, you may place them in the bottom half of a filter cassette.


(e) Stabilize sample media (e.g., filters) in the PM-stabilization environment. Consider an unused sample medium stabilized as long as it has been in the PM-stabilization environment for a minimum of 30 min, during which the PM-stabilization environment has been within the specifications of § 1065.190.


(f) Weigh the sample media (e.g., filters) automatically or manually, as follows:


(1) For automatic weighing, follow the automation system manufacturer’s instructions to prepare samples for weighing. This may include placing the samples in a special container.


(2) Use good engineering judgment to determine if substitution weighing is necessary to show that an engine meets the applicable standard. You may follow the substitution weighing procedure in paragraph (j) of this section, or you may develop your own procedure.


(g) Correct the measured mass of each sample medium (e.g., filter) for buoyancy as described in § 1065.690. These buoyancy-corrected values are subsequently subtracted from the post-test mass of the corresponding sample media (e.g., filters) and collected PM to determine the mass of PM emitted during the test.


(h) You may repeat measurements to determine the mean mass of each sample medium (e.g., filter). Use good engineering judgment to exclude outliers from the calculation of mean mass values.


(i) If you use filters as sample media, load unused filters that have been tare-weighed into clean filter cassettes and place the loaded cassettes in a clean, covered or sealed container before removing them from the stabilization environment for transport to the test site for sampling. We recommend that you keep filter cassettes clean by periodically washing or wiping them with a compatible solvent applied using a lint-free cloth. Depending upon your cassette material, ethanol (C2H5OH) might be an acceptable solvent. Your cleaning frequency will depend on your engine’s level of PM and HC emissions.


(j) Substitution weighing involves measurement of a reference weight before and after each weighing of the PM sampling medium (e.g., the filter). While substitution weighing requires more measurements, it corrects for a balance’s zero-drift and it relies on balance linearity only over a small range. This is most advantageous when quantifying net PM masses that are less than 0.1% of the sample medium’s mass. However, it may not be advantageous when net PM masses exceed 1% of the sample medium’s mass. If you utilize substitution weighing, it must be used for both pre-test and post-test weighing. The same substitution weight must be used for both pre-test and post-test weighing. Correct the mass of the substitution weight for buoyancy if the density of the substitution weight is less than 2.0 g/cm
3. The following steps are an example of substitution weighing:


(1) Use electrically grounded tweezers or a grounding strap, as described in § 1065.190.


(2) Use a static neutralizer as described in § 1065.190 to minimize static electric charge on any object before it is placed on the balance pan.


(3) Select and weigh a substitution weight that meets the requirements for calibration weights found in § 1065.790. The substitution weight must also have the same density as the weight you use to span the microbalance, and be similar in mass to an unused sample medium (e.g., filter). A 47 mm PTFE membrane filter will typically have a mass in the range of 80 to 100 mg.


(4) Record the stable balance reading, then remove the substitution weight.


(5) Weigh an unused sample medium (e.g., a new filter), record the stable balance reading and record the balance environment’s dewpoint, ambient temperature, and atmospheric pressure.


(6) Reweigh the substitution weight and record the stable balance reading.


(7) Calculate the arithmetic mean of the two substitution-weight readings that you recorded immediately before and after weighing the unused sample. Subtract that mean value from the unused sample reading, then add the true mass of the substitution weight as stated on the substitution-weight certificate. Record this result. This is the unused sample’s tare weight without correcting for buoyancy.


(8) Repeat these substitution-weighing steps for the remainder of your unused sample media.


(9) Once weighing is completed, follow the instructions given in paragraphs (g) through (i) of this section.


[73 FR 37323, June 30, 2008, as amended at 81 FR 74169, Oct. 25, 2016]


§ 1065.595 PM sample post-conditioning and total weighing.

After testing is complete, return the sample media (e.g., filters) to the weighing and PM-stabilization environments.


(a) Make sure the weighing and PM-stabilization environments meet the ambient condition specifications in § 1065.190(e)(1). If those specifications are not met, leave the test sample media (e.g., filters) covered until proper conditions have been met.


(b) In the PM-stabilization environment, remove PM samples from sealed containers. If you use filters, you may remove them from their cassettes before or after stabilization. We recommend always removing the top portion of the cassette before stabilization. When you remove a filter from a cassette, separate the top half of the cassette from the bottom half using a cassette separator designed for this purpose.


(c) To handle PM samples, use electrically grounded tweezers or a grounding strap, as described in § 1065.190.


(d) Visually inspect the sampling media (e.g., filters) and collected particulate. If either the sample media (e.g., filters) or particulate sample appear to have been compromised, or the particulate matter contacts any surface other than the filter, the sample may not be used to determine particulate emissions. In the case of contact with another surface, clean the affected surface before continuing.


(e) To stabilize PM samples, place them in one or more containers that are open to the PM-stabilization environment, as described in § 1065.190. If you expect that a sample medium’s (e.g., filter’s) total surface concentration of PM will be less than 400 µg, assuming a 38 mm diameter filter stain area, expose the filter to a PM-stabilization environment meeting the specifications of § 1065.190 for at least 30 minutes before weighing. If you expect a higher PM concentration or do not know what PM concentration to expect, expose the filter to the stabilization environment for at least 60 minutes before weighing. Note that 400 µg on sample media (e.g., filters) is an approximate net mass of 0.07 g/kW · hr for a hot-start test with compression-ignition engines tested according to 40 CFR part 86, subpart N, or 50 mg/mile for light-duty vehicles tested according to 40 CFR part 86, subpart B.


(f) Repeat the procedures in § 1065.590(f) through (i) to determine post-test mass of the sample media (e.g., filters).


(g) Subtract each buoyancy-corrected tare mass of the sample medium (e.g., filter) from its respective buoyancy-corrected mass. The result is the net PM mass, mPM. Use mPM in emission calculations in § 1065.650.


[73 FR 37323, June 30, 2008]


Subpart G – Calculations and Data Requirements

§ 1065.601 Overview.

(a) This subpart describes how to –


(1) Use the signals recorded before, during, and after an emission test to calculate brake-specific emissions of each measured exhaust constituent.


(2) Perform calculations for calibrations and performance checks.


(3) Determine statistical values.


(b) You may use data from multiple systems to calculate test results for a single emission test, consistent with good engineering judgment. You may also make multiple measurements from a single batch sample, such as multiple weighings of a PM filter or multiple readings from a bag sample. Although you may use an average of multiple measurements from a single test, you may not use test results from multiple emission tests to report emissions.


(1) We allow weighted means where appropriate.


(2) You may discard statistical outliers, but you must report all results.


(3) For emission measurements related to durability testing, we may allow you to exclude certain test points other than statistical outliers relative to compliance with emission standards, consistent with good engineering judgment and normal measurement variability; however, you must include these results when calculating the deterioration factor. This would allow you to use durability data from an engine that has an intermediate test result above the standard that cannot be discarded as a statistical outlier, as long as good engineering judgment indicates that the test result does not represent the engine’s actual emission level. Note that good engineering judgment would preclude you from excluding endpoints. Also, if normal measurement variability causes emission results below zero, include the negative result in calculating the deterioration factor to avoid an upward bias. These provisions related to durability testing are intended to address very stringent standards where measurement variability is large relative to the emission standard.


(c) You may use any of the following calculations instead of the calculations specified in this subpart G:


(1) Mass-based emission calculations prescribed by the International Organization for Standardization (ISO), according to ISO 8178, except the following:


(i) ISO 8178-1 Section 14.4, NOX Correction for Humidity and Temperature. See § 1065.670 for approved methods for humidity corrections.


(ii) ISO 8178-1 Section 15.1, Particulate Correction Factor for Humidity.


(2) Other calculations that you show are equivalent to within ±0.1% of the brake-specific emission results determined using the calculations specified in this subpart G.


[70 FR 40516, July 13, 2005, as amended at 73 FR 37324, June 30, 2008; 74 FR 56516, Oct. 30, 2009; 75 FR 23044, Apr. 30, 2010; 79 FR 23778, Apr. 28, 2014]


§ 1065.602 Statistics.

(a) Overview. This section contains equations and example calculations for statistics that are specified in this part. In this section we use the letter “y” to denote a generic measured quantity, the superscript over-bar “” to denote an arithmetic mean, and the subscript “ref” to denote the reference quantity being measured.


(b) Arithmetic mean. Calculate an arithmetic mean, y
, as follows:



Example:

N = 3

y1 = 10.60

y2 = 11.91

yN = y3 = 11.09


y
= 11.20

(c) Standard deviation. Calculate the standard deviation for a non-biased (e.g., N-1) sample, σ, as follows:



Example:

N = 3

y1 = 10.60

y2 = 11.91

yN = y3 = 11.09

y
= 11.20


σy = 0.6619

(d) Root mean square. Calculate a root mean square, rmsy, as follows:



Example:

N = 3

y1 = 10.60

y2 = 11.91

yN = y3 = 11.09


rmsy = 11.21

(e) Accuracy. Determine accuracy as described in this paragraph (e). Make multiple measurements of a standard quantity to create a set of observed values, yi, and compare each observed value to the known value of the standard quantity. The standard quantity may have a single known value, such as a gas standard, or a set of known values of negligible range, such as a known applied pressure produced by a calibration device during repeated applications. The known value of the standard quantity is represented by yrefi. If you use a standard quantity with a single value, yrefi would be constant. Calculate an accuracy value as follows:



Example:

yref = 1800.0

N = 3

y1 = 1806.4

y2 = 1803.1

y3 = 1798.9


accuracy = 2.8

(f) t-test. Determine if your data passes a t-test by using the following equations and tables: (1) For an unpaired t-test, calculate the t statistic and its number of degrees of freedom, v, as follows:




Example:

Y
ref = 1205.3

Y
= 1123.8

σref = 9.399

σy = 10.583

Nref = 11

N = 7


t = 16.63

σref = 9.399

σy = 10.583

Nref = 11

N = 7


v = 11.76

(2) For a paired t-test, calculate the t statistic and its number of degrees of freedom, v, as follows, noting that the εi are the errors (e.g., differences) between each pair of yrefi and yi:



Example 1:

ε
= −0.12580

N = 16

σε = 0.04837


t = 10.403

v = N−1

Example 2:

N = 16

v = 16−1

v = 15

(3) Use Table 1 of this section to compare t to the tcrit values tabulated versus the number of degrees of freedom. If t is less than tcrit, then t passes the t-test. The Microsoft Excel software has a TINV function that returns results equivalent results and may be used in place of Table 1, which follows:


Table 1 of § 1065.602 – Critical t Values Versus Number of Degrees of Freedom, v
a

v
Confidence
90%
95%
16.31412.706
22.9204.303
32.3533.182
42.1322.776
52.0152.571
61.9432.447
71.8952.365
81.8602.306
91.8332.262
101.8122.228
111.7962.201
121.7822.179
131.7712.160
141.7612.145
151.7532.131
161.7462.120
181.7342.101
201.7252.086
221.7172.074
241.7112.064
261.7062.056
281.7012.048
301.6972.042
351.6902.030
401.6842.021
501.6762.009
701.6671.994
1001.6601.984
1000+1.6451.960

a Use linear interpolation to establish values not shown here.


(g) F-test. Calculate the F statistic as follows:



Example:


F = 1.268

(1) For a 90% confidence F-test, use the following table to compare F to the Fcrit90 values tabulated versus (N−1) and (Nref−1). If F is less than Fcrit90, then F passes the F-test at 90% confidence.



(2) For a 95% confidence F-test, use the following table to compare F to the Fcrit90 values tabulated versus (N−1) and (Nref−1). If F is less than Fcrit95, then F passes the F-test at 95% confidence.



(h) Slope. Calculate a least-squares regression slope, a1y, using one of the following two methods:


(1) If the intercept floats, i.e., is not forced through zero:



Example:

N = 6000

y1 = 2045.8

y
= 1050.1

yref1 = 2045.0

y
ref = 1055.3


a1y = 1.0110

(2) If the intercept is forced through zero, such as for verifying proportional sampling:



Example:

N = 6000

y1 = 2045.8

yref1 = 2045.0


a1y = 1.0110

(i) Intercept. For a floating intercept, calculate a least-squares regression intercept, a0y, as follows:



Example:

y
= 1050.1

a1y = 1.0110

y
ref = 1055.3

a0y = 1050.1 − (1.0110 · 1055.3)

a0y = −16.8083

(j) Standard error of the estimate. Calculate a standard error of the estimate, SEE, using one of the following two methods:


(1) For a floating intercept:



Example:

N = 6000

y1 = 2045.8

a0y = −16.8083

a1y = 1.0110

yref1 = 2045.0


SEEy = 5.348

(2) If the intercept is forced through zero, such as for verifying proportional sampling:



Example:

N = 6000

y1 = 2045.8

a1y = 1.0110

yref1 = 2045.0


SEEy = 5.347

(k) Coefficient of determination. Calculate a coefficient of determination, ry
2, as follows:



Example:

N = 6000

y1 = 2045.8

a0y = −16.8083

a1y = 1.0110

yref1 = 2045.0

y
= 1480.5


(l) Flow-weighted mean concentration. In some sections of this part, you may need to calculate a flow-weighted mean concentration to determine the applicability of certain provisions. A flow-weighted mean is the mean of a quantity after it is weighted proportional to a corresponding flow rate. For example, if a gas concentration is measured continuously from the raw exhaust of an engine, its flow-weighted mean concentration is the sum of the products of each recorded concentration times its respective exhaust molar flow rate, divided by the sum of the recorded flow rate values. As another example, the bag concentration from a CVS system is the same as the flow-weighted mean concentration because the CVS system itself flow-weights the bag concentration. You might already expect a certain flow-weighted mean concentration of an emission at its standard based on previous testing with similar engines or testing with similar equipment and instruments. If you need to estimate your expected flow-weighted mean concentration of an emission at its standard, we recommend using the following examples as a guide for how to estimate the flow-weighted mean concentration expected at the standard. Note that these examples are not exact and that they contain assumptions that are not always valid. Use good engineering judgment to determine if you can use similar assumptions.


(1) To estimate the flow-weighted mean raw exhaust NOX concentration from a turbocharged heavy-duty compression-ignition engine at a NOX standard of 2.5 g/(kW·hr), you may do the following:


(i) Based on your engine design, approximate a map of maximum torque versus speed and use it with the applicable normalized duty cycle in the standard-setting part to generate a reference duty cycle as described in § 1065.610. Calculate the total reference work, Wref, as described in § 1065.650. Divide the reference work by the duty cycle’s time interval, Δtdutycycle, to determine mean reference power, p
ref.


(ii) Based on your engine design, estimate maximum power, Pmax, the design speed at maximum power, ƒnmax, the design maximum intake manifold boost pressure, Pinmax, and temperature, Tinmax. Also, estimate a mean fraction of power that is lost due to friction and pumping, P
. Use this information along with the engine displacement volume, Vdisp, an approximate volumetric efficiency, η

V, and the number of engine strokes per power stroke (two-stroke or four-stroke), Nstroke, to estimate the maximum raw exhaust molar flow rate, n
exhmax.


(iii) Use your estimated values as described in the following example calculation:



Example:

eNOX = 2.5 g/(kW·hr)

Wref = 11.883 kW·hr

MNOX = 46.0055 g/mol = 46.0055·10−
6 g/µmol

Δtdutycycle = 20 min = 1200 s

P
ref = 35.65 kW

P
frict = 15%

Pmax = 125 kW

pmax = 300 kPa = 300000 Pa

Vdisp = 3.0 l = 0.0030 m
3/r

fnmax = 2800 r/min = 46.67 r/s

Nstroke = 4

ηV = 0.9

R = 8.314472 J/(mol·K)

Tmax = 348.15 K


(2) To estimate the flow-weighted mean NMHC concentration in a CVS from a naturally aspirated nonroad spark-ignition engine at an NMHC standard of 0.5 g/(kW·hr), you may do the following:


(i) Based on your engine design, approximate a map of maximum torque versus speed and use it with the applicable normalized duty cycle in the standard-setting part to generate a reference duty cycle as described in § 1065.610. Calculate the total reference work, Wref, as described in § 1065.650.


(ii) Multiply your CVS total molar flow rate by the time interval of the duty cycle, Δtdutycycle. The result is the total diluted exhaust flow of the ndexh.


(iii) Use your estimated values as described in the following example calculation:



Example:

eNMHC = 1.5 g/(kW·hr)

Wref = 5.389 kW·hr

MNMHC = 13.875389 g/mol = 13.875389·10−
6 g/µmol

n
dexh = 6.021 mol/s

Δtdutycycle = 30 min = 1800 s


X
NMHC = 53.8 µmol/mol

[86 FR 34548, June 29, 2021]


§ 1065.610 Duty cycle generation.

This section describes how to generate duty cycles that are specific to your engine, based on the normalized duty cycles in the standard-setting part. During an emission test, use a duty cycle that is specific to your engine to command engine speed, torque, and power, as applicable, using an engine dynamometer and an engine operator demand. Paragraph (a) of this section describes how to “normalize” your engine’s map to determine the maximum test speed and torque for your engine. The rest of this section describes how to use these values to “denormalize” the duty cycles in the standard-setting parts, which are all published on a normalized basis. Thus, the term “normalized” in paragraph (a) of this section refers to different values than it does in the rest of the section.


(a) Maximum test speed, fntest. This section generally applies to duty cycles for variable-speed engines. For constant-speed engines subject to duty cycles that specify normalized speed commands, use the no-load governed speed as the measured fntest. This is the highest engine speed where an engine outputs zero torque. For variable-speed engines, determine fntest as follows:


(1) Develop a measured value for fntest as follows:


(i) Determine maximum power, Pmax, from the engine map generated according to § 1065.510 and calculate the value for power equal to 98% of Pmax.


(ii) Determine the lowest and highest engine speeds corresponding to 98% of Pmax, using linear interpolation, and no extrapolation, as appropriate.


(iii) Determine the engine speed corresponding to maximum power, fnPmax, by calculating the average of the two speed values from paragraph (a)(1)(ii) of this section. If there is only one speed where power is equal to 98% of Pmax, take fnPmax as the speed at which Pmax occurs.


(iv) Transform the map into a normalized power-versus-speed map by dividing power terms by Pmax and dividing speed terms by fnPmax. Use the following equation to calculate a quantity representing the sum of squares from the normalized map:




Where:

i = an indexing variable that represents one recorded value of an engine map.

fnnormi = an engine speed normalized by dividing it by fnPmax.

Pnormi = an engine power normalized by dividing it by Pmax.

(v) Determine the maximum value for the sum of the squares from the map and multiply that value by 0.98.


(vi) Determine the lowest and highest engine speeds corresponding to the value calculated in paragraph (a)(1)(v) of this section, using linear interpolation as appropriate. Calculate fntest as the average of these two speed values. If there is only one speed corresponding to the value calculated in paragraph (a)(1)(v) of this section, take fntest as the speed where the maximum of the sum of the squares occurs.


(vii) The following example illustrates a calculation of fntest:


Pmax = 230.0



(fn1 = 2360, P1 = 222.5, fnnorm1 = 1.002, Pnorm1 = 0.9675)

(fn2 = 2364, P2 = 226.8, fnnorm2 = 1.004, Pnorm2 = 0.9859)

(fn3 = 2369, P3 = 228.6, fnnorm3 = 1.006, Pnorm3 = 0.9940)

(fn4 = 2374, P4 = 218.7, fnnorm4 = 1.008, Pnorm4 = 0.9508)

Sum of squares = (1.002
2 + 0.9675
2) = 1.94

Sum of squares = (1.004
2 + 0.9859
2) = 1.98

Sum of squares = (1.006
2 + 0.9940
2) = 2.00

Sum of squares = (1.008
2 + 0.9508
2) = 1.92


(2) For engines with a high-speed governor that will be subject to a reference duty cycle that specifies normalized speeds greater than 100%, calculate an alternate maximum test speed, fntest,alt, as specified in this paragraph (a)(2). If fntest,alt is less than the measured maximum test speed, fntest, determined in paragraph (a)(1) of this section, replace fntest with fntest,alt. In this case, fntest,alt becomes the “maximum test speed” for that engine for all duty cycles. Note that § 1065.510 allows you to apply an optional declared maximum test speed to the final measured maximum test speed determined as an outcome of the comparison between fntest, and fntest,alt in this paragraph (a)(2). Determine fntest,alt as follows:




Where:

fntest,alt = alternate maximum test speed

fnhi,idle = warm high-idle speed

fnidle = warm idle speed

% speedmax = maximum normalized speed from duty cycle


Example:

fnhi,idle = 2200 r/min

fnidle = 800 r/min


fntest,alt = 2133 r/min

(3) For variable-speed engines, transform normalized speeds to reference speeds according to paragraph (c) of this section by using the measured maximum test speed determined according to paragraphs (a)(1) and (2) of this section – or use your declared maximum test speed, as allowed in § 1065.510.


(4) For constant-speed engines, transform normalized speeds to reference speeds according to paragraph (c) of this section by using the measured no-load governed speed – or use your declared maximum test speed, as allowed in § 1065.510.


(b) Maximum test torque, Ttest. For constant-speed engines, determine the measured Ttest from the torque and power-versus-speed maps, generated according to § 1065.510, as follows:


(1) For constant speed engines mapped using the methods in § 1065.510(d)(5)(i) or (ii), determine Ttest as follows:


(i) Determine maximum power, Pmax, from the engine map generated according to § 1065.510 and calculate the value for power equal to 98% of Pmax.


(ii) Determine the lowest and highest engine speeds corresponding to 98% of Pmax, using linear interpolation, and no extrapolation, as appropriate.


(iii) Determine the engine speed corresponding to maximum power, fnPmax, by calculating the average of the two speed values from paragraph (a)(1)(ii) of this section. If there is only one speed where power is equal to 98% of Pmax, take fnPmax as the speed at which Pmax occurs.


(iv) Transform the map into a normalized power-versus-speed map by dividing power terms by Pmax and dividing speed terms by fnPmax. Use Eq. 1065.610-1 to calculate a quantity representing the sum of squares from the normalized map.


(v) Determine the maximum value for the sum of the squares from the map and multiply that value by 0.98.


(vi) Determine the lowest and highest engine speeds corresponding to the value calculated in paragraph (a)(1)(v) of this section, using linear interpolation as appropriate. Calculate fntest as the average of these two speed values. If there is only one speed corresponding to the value calculated in paragraph (a)(1)(v) of this section, take fntest as the speed where the maximum of the sum of the squares occurs.


(vii) The measured Ttest is the mapped torque at fntest.


(2) For constant-speed engines using the two-point mapping method in § 1065.510(d)(5)(iii), you may follow paragraph (a)(1) of this section to determine the measured Ttest, or you may use the measured torque of the second point as the measured Ttest directly.


(3) Transform normalized torques to reference torques according to paragraph (d) of this section by using the measured maximum test torque determined according to paragraph (b)(1) of this section – or use your declared maximum test torque, as allowed in § 1065.510.


(c) Generating reference speed values from normalized duty cycle speeds. Transform normalized speed values to reference values as follows:


(1) % speed. If your normalized duty cycle specifies % speed values, use your warm idle speed and your maximum test speed to transform the duty cycle, as follows:




Example:

% speed = 85% = 0.85

fntest = 2364 r/min

fnidle = 650 r/min

fnref = 0.85 • (2364−650) + 650

fnref = 2107 r/min

(2) A, B, and C speeds. If your normalized duty cycle specifies speeds as A, B, or C values, use your power-versus-speed curve to determine the lowest speed below maximum power at which 50% of maximum power occurs. Denote this value as nlo. Take nlo to be warm idle speed if all power points at speeds below the maximum power speed are higher than 50% of maximum power. Also determine the highest speed above maximum power at which 70% of maximum power occurs. Denote this value as nhi. If all power points at speeds above the maximum power speed are higher than 70% of maximum power, take nhi to be the declared maximum safe engine speed or the declared maximum representative engine speed, whichever is lower. Use nhi and nlo to calculate reference values for A, B, or C speeds as follows:






Example:

nlo = 1005 r/min

nhi = 2385 r/min

fnrefA = 0.25 • (2385−1005) + 1005

fnrefB = 0.50 • (2385−1005) + 1005

fnrefC = 0.75 • (2385−1005) + 1005

fnrefA = 1350 r/min

fnrefB = 1695 r/min

fnrefC = 2040 r/min

(3) Intermediate speed. Based on the map, determine maximum torque, Tmax, and the corresponding speed, fnTmax, calculated as the average of the lowest and highest speeds at which torque is equal to 98% of Tmax. Use linear interpolation between points to determine the speeds where torque is equal to 98% of Tmax. Identify your reference intermediate speed as one of the following values:


(i) fnTmax if it is between (60 and 75) % of maximum test speed.


(ii) 60% of maximum test speed if fnTmax is less than 60% of maximum test speed.


(iii) 75% of maximum test speed if fnTmax is greater than 75% of maximum test speed.


(d) Generating reference torques from normalized duty-cycle torques. Transform normalized torques to reference torques using your map of maximum torque versus speed.


(1) Reference torque for variable-speed engines. For a given speed point, multiply the corresponding % torque by the maximum torque at that speed, according to your map. If your engine is subject to a reference duty cycle that specifies negative torque values (i.e., engine motoring), use negative torque for those motoring points (i.e., the motoring torque). If you map negative torque as allowed under § 1065.510 (c)(2) and the low-speed governor activates, resulting in positive torques, you may replace those positive motoring mapped torques with negative values between zero and the largest negative motoring torque. For both maximum and motoring torque maps, linearly interpolate mapped torque values to determine torque between mapped speeds. If the reference speed is below the minimum mapped speed (i.e., 95% of idle speed or 95% of lowest required speed, whichever is higher), use the mapped torque at the minimum mapped speed as the reference torque. The result is the reference torque for each speed point.


(2) Reference torque for constant-speed engines. Multiply a % torque value by your maximum test torque. The result is the reference torque for each point.


(3) Required deviations. We require the following deviations for variable-speed engines intended primarily for propulsion of a vehicle with an automatic transmission where that engine is subject to a transient duty cycle with idle operation. These deviations are intended to produce a more representative transient duty cycle for these applications. For steady-state duty cycles or transient duty cycles with no idle operation, the requirements in this paragraph (d)(3) do not apply. Idle points for steady-state duty cycles of such engines are to be run at conditions simulating neutral or park on the transmission. You may develop different procedures for adjusting CITT as a function of speed, consistent with good engineering judgment.


(i) Zero-percent speed is the warm idle speed measured according to § 1065.510(b)(6) with CITT applied, i.e., measured warm idle speed in drive.


(ii) If the cycle begins with a set of contiguous idle points (zero-percent speed, and zero-percent torque), leave the reference torques set to zero for this initial contiguous idle segment. This is to represent free idle operation with the transmission in neutral or park at the start of the transient duty cycle, after the engine is started. If the initial idle segment is longer than 24 seconds, change the reference torques for the remaining idle points in the initial contiguous idle segment to CITT (i.e., change idle points corresponding to 25 seconds to the end of the initial idle segment to CITT). This is to represent shifting the transmission to drive.


(iii) For all other idle points, change the reference torque to CITT. This is to represent the transmission operating in drive.


(iv) If the engine is intended primarily for automatic transmissions with a Neutral-When-Stationary feature that automatically shifts the transmission to neutral after the vehicle is stopped for a designated time and automatically shifts back to drive when the operator increases demand (i.e., pushes the accelerator pedal), change the reference torque back to zero for idle points in drive after the designated time.


(v) For all points with normalized speed at or below zero percent and reference torque from zero to CITT, set the reference torque to CITT. This is to provide smoother torque references below idle speed.


(vi) For motoring points, make no changes.


(vii) For consecutive points with reference torques from zero to CITT that immediately follow idle points, change their reference torques to CITT. This is to provide smooth torque transition out of idle operation. This does not apply if the Neutral-When-Stationary feature is used and the transmission has shifted to neutral.


(viii) For consecutive points with reference torque from zero to CITT that immediately precede idle points, change their reference torques to CITT. This is to provide smooth torque transition into idle operation.


(4) Permissible deviations for any engine. If your engine does not operate below a certain minimum torque under normal in-use conditions, you may use a declared minimum torque as the reference value instead of any value denormalized to be less than the declared value. For example, if your engine is connected to a hydrostatic transmission and it has a minimum torque even when all the driven hydraulic actuators and motors are stationary and the engine is at idle, then you may use this declared minimum torque as a reference torque value instead of any reference torque value generated under paragraph (d)(1) or (2) of this section that is between zero and this declared minimum torque.


(e) Generating reference power values from normalized duty cycle powers. Transform normalized power values to reference speed and power values using your map of maximum power versus speed.


(1) First transform normalized speed values into reference speed values. For a given speed point, multiply the corresponding % power by the mapped power at maximum test speed, fntest, unless specified otherwise by the standard-setting part. The result is the reference power for each speed point, Pref. Convert these reference powers to corresponding torques for operator demand and dynamometer control and for duty cycle validation per 1065.514. Use the reference speed associated with each reference power point for this conversion. As with cycles specified with % torque, linearly interpolate between these reference torque values generated from cycles with % power.


(2) Permissible deviations for any engine. If your engine does not operate below a certain power under normal in-use conditions, you may use a declared minimum power as the reference value instead of any value denormalized to be less than the declared value. For example, if your engine is directly connected to a propeller, it may have a minimum power called idle power. In this case, you may use this declared minimum power as a reference power value instead of any reference power value generated per paragraph (e)(1) of this section that is from zero to this declared minimum power.


[73 FR 37324, June 30, 2008, as amended at 73 FR 59330, Oct. 8, 2008; 75 FR 23045, Apr. 30, 2010; 76 FR 57453, Sept. 15, 2011; 78 FR 36398, June 17, 2013; 79 FR 23783, Apr. 28, 2014; 80 FR 9118, Feb. 19, 2015; 81 FR 74170, Oct. 25, 2016; 86 FR 34555, June 29, 2021]


§ 1065.630 Local acceleration of gravity.

(a) The acceleration of Earth’s gravity, ag, varies depending on the test location. Determine ag at your location by entering latitude, longitude, and elevation data into the U.S. National Oceanographic and Atmospheric Administration’s surface gravity prediction Web site at http://www.ngs.noaa.gov/cgi-bin/grav__pdx.prl.


(b) If the Web site specified in paragraph (a) of this section is unavailable, you may calculate ag for your latitude as follows:




Where:

u = Degrees north or south latitude.


Example:

u = 45°

ag = 9.7803267715 · (1 + 5.2790414 · 10−3 · sin
2 (45) + 2.32718 · 10−5 · sin
4 (45) + 1.262 · 10−7 · sin
6 (45) + 7 · 10−10 · sin
8 (45)

ag = 9.8061992026 m/s
2

[79 FR 23784, Apr. 28, 2014]


§ 1065.640 Flow meter calibration calculations.

This section describes the calculations for calibrating various flow meters. After you calibrate a flow meter using these calculations, use the calculations described in § 1065.642 to calculate flow during an emission test. Paragraph (a) of this section first describes how to convert reference flow meter outputs for use in the calibration equations, which are presented on a molar basis. The remaining paragraphs describe the calibration calculations that are specific to certain types of flow meters.


(a) Reference meter conversions. The calibration equations in this section use molar flow rate, n
ref, as a reference quantity. If your reference meter outputs a flow rate in a different quantity, such as standard volume rate,V
stdref, actual volume rate,V
actref, or mass rate, m
ref, convert your reference meter output to a molar flow rate using the following equations, noting that while values for volume rate, mass rate, pressure, temperature, and molar mass may change during an emission test, you should ensure that they are as constant as practical for each individual set point during a flow meter calibration:




Where:

n
ref = reference molar flow rate.

V
stdref = reference volume flow rate corrected to a standard pressure and a standard temperature.

V
actref = reference volume flow rate at the actual pressure and temperature of the flow rate.

m
ref = reference mass flow.

pstd = standard pressure.

pact = actual pressure of the flow rate.

Tstd = standard temperature.

Tact = actual temperature of the flow rate.

R = molar gas constant.

Mmix = molar mass of the flow rate.


Example 1:

V
stdref = 1000.00 ft
3/min = 0.471948 m
3/s

pstd = 29.9213 in Hg @ 32 °F = 101.325 kPa = 101325 Pa = 101325 kg/(m·s
2)

Tstd = 68.0 °F = 293.15 K

R = 8.314472 J/(mol·K) = 8.314472 (m
2·kg)/(s
2·mol·K)


n
ref = 19.619 mol/s


Example 2:

m
ref = 17.2683 kg/min = 287.805 g/s

Mmix = 28.7805 g/mol


n
ref = 10.0000 mol/s

(b) PDP calibration calculations. Perform the following steps to calibrate a PDP flow meter:


(1) Calculate PDP volume pumped per revolution, Vrev, for each restrictor position from the mean values determined in § 1065.340 as follows:




Where:

n
ref = mean reference molar flow rate.

R = molar gas constant.

T
in = mean temperature at the PDP inlet.

P
in = mean static absolute pressure at the PDP inlet.

f
nPDP = mean PDP speed.


Example:

n
ref = 25.096 mol/s

R = 8.314472 J/(mol·K) = 8.314472 (m
2·kg)/(s
2·mol·K)

T
in = 299.5 K

P
in = 98.290 kPa = 98290 Pa = 98290 kg/(m·s
2)

f
nPDP = 1205.1 r/min = 20.085 r/s


Vrev = 0.03166 m
3/r

(2) Calculate a PDP slip correction factor, Ks, for each restrictor position from the mean values determined in § 1065.340 as follows:




Where:

f
nPDP = mean PDP speed.

P
out = mean static absolute pressure at the PDP outlet.

P
in = mean static absolute pressure at the PDP inlet.


Example:

f
nPDP = 1205.1 r/min = 20.085 r/s

P
out = 100.103 kPa

P
in = 98.290 kPa


Ks = 0.006700 s/r

(3) Perform a least-squares regression of Vrev, versus Ks, by calculating slope, a1, and intercept, a0, as described for a floating intercept in § 1065.602.


(4) Repeat the procedure in paragraphs (b)(1) through (3) of this section for every speed that you run your PDP.


(5) The following table illustrates a range of typical values for different PDP speeds:


Table 1 of § 1065.640 – Example of PDP Calibration Data

f
nPDP

(revolution/s)
a1

(m
3/s)
a0

(m
3/revolution)
12.60.8410.056
16.50.831−0.013
20.90.8090.028
23.40.788−0.061

(6) For each speed at which you operate the PDP, use the appropriate regression equation from this paragraph (b) to calculate flow rate during emission testing as described in § 1065.642.


(c) Venturi governing equations and permissible assumptions. This section describes the governing equations and permissible assumptions for calibrating a venturi and calculating flow using a venturi. Because a subsonic venturi (SSV) and a critical-flow venturi (CFV) both operate similarly, their governing equations are nearly the same, except for the equation describing their pressure ratio, r (i.e., rSSV versus rCFV). These governing equations assume one-dimensional isentropic inviscid flow of an ideal gas. Paragraph (c)(5) of this section describes other assumptions that may apply. If good engineering judgment dictates that you account for gas compressibility, you may either use an appropriate equation of state to determine values of Z as a function of measured pressure and temperature, or you may develop your own calibration equations based on good engineering judgment. Note that the equation for the flow coefficient, Cf, is based on the ideal gas assumption that the isentropic exponent, g, is equal to the ratio of specific heats, Cp/Cv. If good engineering judgment dictates using a real gas isentropic exponent, you may either use an appropriate equation of state to determine values of γ as a function of measured pressures and temperatures, or you may develop your own calibration equations based on good engineering judgment.


(1) Calculate molar flow rate, n
, as follows:




Where:

Cd = discharge coefficient, as determined in paragraph (c)(2) of this section.


Cf = flow coefficient, as determined in paragraph (c)(3) of this section.


At = venturi throat cross-sectional area.


pin = venturi inlet absolute static pressure.


Z = compressibility factor.


Mmix = molar mass of gas mixture.


R = molar gas constant.


Tin = venturi inlet absolute temperature.


(2) Using the data collected in § 1065.340, calculate Cd for each flow rate using the following equation:




Where:

n
ref = a reference molar flow rate.

(3) Determine Cf using one of the following methods:


(i) For CFV flow meters only, determine CfCFV from the following table based on your values for β and γ, using linear interpolation to find intermediate values:


Table 2 of § 1065.640-CfCFV Versus b and g for CFV Flow Meters

CfCFV
b
gexh =

1.385
gdexh =

gair =

1.399
0.0000.68220.6846
0.4000.68570.6881
0.5000.69100.6934
0.5500.69530.6977
0.6000.70110.7036
0.6250.70470.7072
0.6500.70890.7114
0.6750.71370.7163
0.7000.71930.7219
0.7200.72450.7271
0.7400.73030.7329
0.7600.73680.7395
0.7700.74040.7431
0.7800.74420.7470
0.7900.74830.7511
0.8000.75270.7555
0.8100.75730.7602
0.8200.76240.7652
0.8300.76770.7707
0.8400.77350.7765
0.8500.77980.7828

(ii) For any CFV or SSV flow meter, you may use the following equation to calculate Cf for each flow rate:




Where:

g = isentropic exponent. For an ideal gas, this is the ratio of specific heats of the gas mixture, Cp/Cv.

r = pressure ratio, as determined in paragraph (c)(4) of this section.

b = ratio of venturi throat to inlet diameters.

(4) Calculate r as follows:


(i) For SSV systems only, calculate rSSV using the following equation:




Where:

ΔpSSV = Differential static pressure; venturi inlet minus venturi throat.

(ii) For CFV systems only, calculate rCFV iteratively using the following equation:



(5) You may apply any of the following simplifying assumptions or develop other values as appropriate for your test configuration, consistent with good engineering judgment:


(i) For raw exhaust, diluted exhaust, and dilution air, you may assume that the gas mixture behaves as an ideal gas: Z = 1.


(ii) For raw exhaust, you may assume g = 1.385.


(iii) For diluted exhaust and dilution air, you may assume g = 1.399.


(iv) For diluted exhaust and dilution air, you may assume the molar mass of the mixture, Mmix, is a function only of the amount of water in the dilution air or calibration air, as follows:




Where:

Mair = molar mass of dry air.

xH2O = amount of H2O in the dilution air or calibration air, determined as described in § 1065.645.

MH2O = molar mass of water.


Example:

Mair = 28.96559 g/mol

xH2O = 0.0169 mol/mol

MH2O = 18.01528 g/mol

Mmix = 28.96559 · (1- 0.0169) + 18.01528 · 0.0169

Mmix = 28.7805 g/mol

(v) For diluted exhaust and dilution air, you may assume a constant molar mass of the mixture, Mmix, for all calibration and all testing as long as your assumed molar mass differs no more than ±1% from the estimated minimum and maximum molar mass during calibration and testing.


You may assume this, using good engineering judgment, if you sufficiently control the amount of water in calibration air and in dilution air or if you remove sufficient water from both calibration air and dilution air. The following table gives examples of permissible ranges of dilution air dewpoint versus calibration air dewpoint:


Table 3 of § 1065.640 – Examples of Dilution Air and Calibration Air

Dewpoints at Which You May Assume a Constant Mmix

If calibration Tdew ( °C) is . . .
assume the following constant Mmix (g/mol) . . .
for the following ranges of Tdew ( °C) during emission tests
a
dry28.96559dry to 18
028.89263dry to 21
528.86148dry to 22
1028.81911dry to 24
1528.76224dry to 26
2028.68685-8 to 28
2528.5880612 to 31
3028.4600523 to 34


a Range valid for all calibration and emission testing over the atmospheric pressure range (80.000 to 103.325) kPa.


(6) The following example illustrates the use of the governing equations to calculate Cd of an SSV flow meter at one reference flow meter value. Note that calculating Cd for a CFV flow meter would be similar, except that Cf would be determined from Table 2 of this section or calculated iteratively using values of b and g as described in paragraph (c)(2) of this section.



Example:

n
ref = 57.625 mol/s

Z = 1

Mmix = 28.7805 g/mol = 0.0287805 kg/mol

R = 8.314472 J/(mol · K) = 8.314472 (m
2 · kg)/(s
2 · mol · K)

Tin = 298.15 K

At = 0.01824 m
2

pin = 99.132 kPa = 99132.0 Pa = 99132 kg/(m·s
2)

g = 1.399

b = 0.8

Δp = 2.312 kPa


Cf = 0.274


Cd = 0.982

(d) SSV calibration. Perform the following steps to calibrate an SSV flow meter:


(1) Calculate the Reynolds number, Re#, for each reference molar flow rate, n
ref, using the throat diameter of the venturi, dt. Because the dynamic viscosity, µ, is needed to compute Re#, you may use your own fluid viscosity model to determine µ for your calibration gas (usually air), using good engineering judgment. Alternatively, you may use the Sutherland three-coefficient viscosity model to approximate µ, as shown in the following sample calculation for Re#:



Where, using the Sutherland three-coefficient viscosity model as captured in Table 4 of this section:




Where:

µ0 = Sutherland reference viscosity.

T0 = Sutherland reference temperature.

S = Sutherland constant.

Table 4 of § 1065.640 – Sutherland Three-Coefficient Viscosity Model Parameters

Gas
a
µ0
T0
S
Temperature range within ±2% error
b
Pressure limit
b
(kg/(m·s))

(K)
(K)
(K)
(kPa)
Air1.716·10−5273111170 to 1900≤1800
CO21.370·10−5273222190 to 1700≤3600
H2O1.12·10−53501064360 to 1500≤10000
O21.919·10−5273139190 to 2000≤2500
N21.663·10−5273107100 to 1500≤1600


a Use tabulated parameters only for the pure gases, as listed. Do not combine parameters in calculations to calculate viscosities of gas mixtures.


b The model results are valid only for ambient conditions in the specified ranges.



Example:

µ0 = 1.716·10−5 kg/(m·s)

T0 = 273 K

S = 111 K


µ = 1.838·10-5 kg/(m·s)

Mmix = 28.7805 g/mol = 0.0287805 kg/mol

n
ref = 57.625 mol/s

dt = 152.4 mm = 0.1524 m

Tin = 298.15 K


Re# = 7.538·10
5

(2) Create an equation for Cd as a function of Re#, using paired values of the two quantities. The equation may involve any mathematical expression, including a polynomial or a power series. The following equation is an example of a commonly used mathematical expression for relating Cd and Re#:



(3) Perform a least-squares regression analysis to determine the best-fit coefficients for the equation and calculate SEE as described in § 1065.602. When using Eq. 1065.640-12, treat Cd as y and the radical term as yref and use Eq. 1065.602-12 to calculate SEE. When using another mathematical expression, use the same approach to substitute that expression into the numerator of Eq. 1065.602-12 and replace the 2 in the denominator with the number of coefficients in the mathematical expression.


(4) If the equation meets the criterion of SEE ≤ 0.5% · Cdmax, you may use the equation for the corresponding range of Re#, as described in § 1065.642.


(5) If the equation does not meet the specified statistical criterion, you may use good engineering judgment to omit calibration data points; however you must use at least seven calibration data points to demonstrate that you meet the criterion. For example, this may involve narrowing the range of flow rates for a better curve fit.


(6) Take corrective action if the equation does not meet the specified statistical criterion even after omitting calibration data points. For example, select another mathematical expression for the Cd versus Re# equation, check for leaks, or repeat the calibration process. If you must repeat the calibration process, we recommend applying tighter tolerances to measurements and allowing more time for flows to stabilize.


(7) Once you have an equation that meets the specified statistical criterion, you may use the equation only for the corresponding range of Re#.


(e) CFV calibration. Some CFV flow meters consist of a single venturi and some consist of multiple venturis, where different combinations of venturis are used to meter different flow rates. For CFV flow meters that consist of multiple venturis, either calibrate each venturi independently to determine a separate discharge coefficient, Cd, for each venturi, or calibrate each combination of venturis as one venturi. In the case where you calibrate a combination of venturis, use the sum of the active venturi throat areas as At, the square root of the sum of the squares of the active venturi throat diameters as dt, and the ratio of the venturi throat to inlet diameters as the ratio of the square root of the sum of the active venturi throat diameters (dt) to the diameter of the common entrance to all the venturis. (D). To determine the Cd for a single venturi or a single combination of venturis, perform the following steps:


(1) Use the data collected at each calibration set point to calculate an individual Cd for each point using Eq. 1065.640-4.


(2) Calculate the mean and standard deviation of all the Cd values according to Eqs. 1065.602-1 and 1065.602-2.


(3) If the standard deviation of all the Cd values is less than or equal to 0.3% of the mean Cd, use the mean Cd in Eq. 1065.642-4, and use the CFV only up to the highest venturi pressure ratio, r, measured during calibration using the following equation:




Where:

ΔpCFV = Differential static pressure; venturi inlet minus venturi outlet.

(4) If the standard deviation of all the Cd values exceeds 0.3% of the mean Cd, omit the Cd value corresponding to the data point collected at the highest r measured during calibration.


(5) If the number of remaining data points is less than seven, take corrective action by checking your calibration data or repeating the calibration process. If you repeat the calibration process, we recommend checking for leaks, applying tighter tolerances to measurements and allowing more time for flows to stabilize.


(6) If the number of remaining Cd values is seven or greater, recalculate the mean and standard deviation of the remaining Cd values.


(7) If the standard deviation of the remaining Cd values is less than or equal to 0.3% of the mean of the remaining Cd, use that mean Cd in Eq. 1065.642-4, and use the CFV values only up to the highest r associated with the remaining Cd.


(8) If the standard deviation of the remaining Cd still exceeds 0.3% of the mean of the remaining Cd values, repeat the steps in paragraph (e)(4) through (8) of this section.


[79 FR 23785, Apr. 28, 2014, as amended at 81 FR 74172, Oct. 25, 2016; 86 FR 34556, June 29, 2021]


§ 1065.642 PDP, SSV, and CFV molar flow rate calculations.

This section describes the equations for calculating molar flow rates from various flow meters. After you calibrate a flow meter according to § 1065.640, use the calculations described in this section to calculate flow during an emission test.


(a) PDP molar flow rate. (1) Based on the speed at which you operate the PDP for a test interval, select the corresponding slope, a1, and intercept, a0, as calculated in § 1065.640, to calculate PDP molar flow rate,, as follows:




Where:

fnPDP = pump speed.

Vrev = PDP volume pumped per revolution, as determined in paragraph (a)(2) of this section.

pin = static absolute pressure at the PDP inlet.

R = molar gas constant.

Tin = absolute temperature at the PDP inlet.

(2) Calculate Vrev using the following equation:



pout = static absolute pressure at the PDP outlet.


Example:

a1 = 0.8405 (m
3/s)

fnPDP = 12.58 r/s

Pout = 99.950 kPa

Pin = 98.575 kPa = 98575 Pa = 98575 kg/(m·s
2)

a0 = 0.056 (m
3/r)

R = 8.314472 J/(mol·K) = 8.314472 (m
2·kg)/(s
2·mol·K)

Tin = 323.5 K



n
= 29.428 mol/s

(b) SSV molar flow rate. Calculate SSV molar flow rate, n
, as follows:




Where:

Cd = discharge coefficient, as determined based on the Cd versus Re# equation in § 1065.640(d)(2).

Cf = flow coefficient, as determined in § 1065.640(c)(3)(ii).

At = venturi throat cross-sectional area.

pin = static absolute pressure at the venturi inlet.

Z = compressibility factor.

Mmix = molar mass of gas mixture.

R = molar gas constant.

Tin = absolute temperature at the venturi inlet.


Example:

At = 0.01824 m
2

pin = 99.132 kPa = 99132 Pa = 99132 kg/(m·s
2)

Z = 1

Mmix = 28.7805 g/mol = 0.0287805 kg/mol

R = 8.314472 J/(mol·K) = 8.314472 (m
2·kg)/(s
2·mol·K)

Tin = 298.15 K

Re# = 7.232·10
5

γ = 1.399

β = 0.8

Δp = 2.312 kPa

Using Eq. 1065.640-7:


rssv = 0.997

Using Eq. 1065.640-6:


Cf = 0.274

Using Eq. 1065.640-5:


Cd = 0.990


n
= 58.173 mol/s

(c) CFV molar flow rate. If you use multiple venturis and you calibrate each venturi independently to determine a separate discharge coefficient, Cd (or calibration coefficient, Kv), for each venturi, calculate the individual molar flow rates through each venturi and sum all their flow rates to determine CFV flow rate, n
. If you use multiple venturis and you calibrated venturis in combination, calculate n
using the sum of the active venturi throat areas as At, the square root of the sum of the squares of the active venturi throat diameters as dt, and the ratio of the venturi throat to inlet diameters as the ratio of the square root of the sum of the active venturi throat diameters (dt) to the diameter of the common entrance to all the venturis (D).


(1) To calculate n
through one venturi or one combination of venturis, use its respective mean Cd and other constants you determined according to § 1065.640 and calculate n
as follows:




Where:

Cf = flow coefficient, as determined in § 1065.640(c)(3).


Example:

Cd = 0.985

Cf = 0.7219

At = 0.00456 m
2

pin = 98.836 kPa = 98836 Pa = 98836 kg/(m·s
2)

Z = 1

Mmix = 28.7805 g/mol = 0.0287805 kg/mol

R = 8.314472 J/(mol·K) = 8.314472 (m
2·kg)/(s
2·mol·K)

Tin = 378.15 K


n
= 33.690 mol/s

(2) To calculate the molar flow rate through one venturi or a combination of venturis, you may use its respective mean, Kv, and other constants you determined according to § 1065.640 and calculate its molar flow rate n
during an emission test. Note that if you follow the permissible ranges of dilution air dewpoint versus calibration air dewpoint in Table 3 of § 1065.640, you may set Mmix-cal and Mmix equal to 1. Calculate n
as follows:




Where:


Vstdref = volume flow rate of the standard at reference conditions of 293.15 K and 101.325 kPa.

Tin-cal = venturi inlet temperature during calibration.

Pin-cal = venturi inlet pressure during calibration.

Mmix-cal = molar mass of gas mixture used during calibration.

Mmix = molar mass of gas mixture during the emission test calculated using Eq. 1065.640-9.


Example:

Vstdref = 0.4895 m
3

Tin-cal = 302.52 K

Pin-cal = 99.654 kPa = 99654 Pa = 99654 kg/(m·s
2)

pin = 98.836 kPa = 98836 Pa = 98836 kg/(m·s
2)

pstd = 101.325 kPa = 101325 Pa = 101325 kg/(m·s
2)

Mmix-cal = 28.9656 g/mol = 0.0289656 kg/mol

Mmix = 28.7805 g/mol = 0.0287805 kg/mol

Tin = 353.15 K

Tstd = 293.15 K

R = 8.314472 J/(mol·K) = 8.314472 (m
2·kg)/(s
2·mol·K)


n
= 16.457 mol/s

[81 FR 74177, Oct. 25, 2016, as amended at 86 FR 34557, June 29, 2021]


§ 1065.643 Carbon balance error verification calculations.

This section describes how to calculate quantities used in the carbon balance error verification described in § 1065.543. Paragraphs (a) through (c) of this section describe how to calculate the mass of carbon for a test interval from carbon-carrying fluid streams, intake air into the system, and exhaust emissions, respectively. Paragraph (d) of this section describes how to use these carbon masses to calculate four different quantities for evaluating carbon balance error. Use rectangular or trapezoidal integration methods to calculate masses and amounts over a test interval from continuously measured or calculated mass and molar flow rates.


(a) Fuel and other fluids. Determine the mass of fuel, DEF, and other carbon-carrying fluid streams, other than intake air, flowing into the system, mfluidj, for each test interval. Note that § 1065.543 allows you to omit all flows other than fuel. You may determine the mass of DEF based on ECM signals for DEF flow rate. You may determine fuel mass during field testing based on ECM signals for fuel flow rate. Calculate the mass of carbon from the combined carbon-carrying fluid streams flowing into the system as follows:




Where:

j = an indexing variable that represents one carbon-carrying fluid stream.

N = total number of carbon-carrying fluid streams into the system over the test interval.

wC = carbon mass fraction of the carbon-carrying fluid stream as determined in § 1065.655(d).

mfluid = the mass of the carbon-carrying fluid stream determined over the test interval.


Example:

N = 2

wCfuel = 0.869

wCDEF = 0.065

mfuel = 1119.6 g

mDEF = 36.8 g

mCfluid = 0.869·1119.6 + 0.065·36.8 = 975.3 g

(b) Intake air. Calculate the mass of carbon in the intake air, mCair, for each test interval using one of the methods in this paragraph (b). The methods are listed in order of preference. Use the first method where all the inputs are available for your test configuration. For methods that calculate mCair based on the amount of CO2 per mole of intake air, we recommend measuring intake air concentration, but you may calculate xCO2int using Eq. 1065.655-10 and letting xCO2intdry = 375 µmol/mol.


(1) Calculate mCair, using the following equation if you measure intake air flow:




Where:

MC = molar mass of carbon.

nint = measured amount of intake air over the test interval.

xCO2int = amount of intake air CO2 per mole of intake air.


Example:

MC = 12.0107 g/mol

nint = 62862 mol

xCO2int = 369 µmol/mol = 0.000369 mol/mol

mCair = 12.0107·62862·0.000369 = 278.6 g

(2) Calculate mCair, using the following equation if you measure or calculate raw exhaust flow and you calculate chemical balance terms:




Where:

MC = molar mass of carbon.

nexh = calculated or measured amount of raw exhaust over the test interval.

xH2Oexh = amount of H2O in exhaust per mole of exhaust.

xCO2int = amount of intake air CO2 per mole of intake air.

xdil/exhdry = amount of excess air per mole of dry exhaust. Note that excess air and intake air have the same composition, so xCO2dil = xCO2int and xH2Odil = xH2Oint for the chemical balance calculation for raw exhaust.

xint/exhdry = amount of intake air required to produce actual combustion products per mole of dry exhaust.


Example:

MC = 12.0107 g/mol

nexh = 62862 mol

xH2Oexh = 0.034 mol/mol

xCO2int = 369 µmol/mol = 0.000369 mol/mol

xdil/exhdry = 0.570 mol/mol

xint/exhdry = 0.465 mol/mol

mCair = 12.0107·62862·(1 − 0.034)·0.000369·(0.570 + 0.465) = 278.6 g

(3) Calculate mCair, using the following equation if you measure raw exhaust flow:




Where:

MC = molar mass of carbon.

nexh = measured amount of raw exhaust over the test interval.

xCO2int = amount of intake air CO2 per mole of intake air.


Example:

MC = 12.0107 g/mol

nexh = 62862 mol

xCO2int = 369 µmol/mol = 0.000369 mol/mol

mCair = 12.0107·62862·0.000369 = 278.6 g

(4) Calculate mCair, using the following equation if you measure diluted exhaust flow and dilution air flow:




Where:

MC = molar mass of carbon.

ndexh = measured amount of diluted exhaust over the test interval as determined in § 1065.642.

ndil = measured amount of dilution air over the test interval as determined in § 1065.667(b).

xCO2int = amount of intake air CO2 per mole of intake air.


Example:

MC = 12.0107 g/mol

ndexh = 942930 mol

ndil = 880068 mol

xCO2int = 369 µmol/mol = 0.000369 mol/mol

mCair = 12.0107·(942930 − 880068)·0.000369 = 278.6 g

(5) Determined mCair based on ECM signals for intake air flow as described in paragraph (b)(1) of this section.


(6) If you measure diluted exhaust, determine mCair as described in paragraph (b)(4) of this section using a calculated amount of dilution air over the test interval as determined in § 1065.667(d) instead of the measured amount of dilution air.


(c) Exhaust emissions. Calculate the mass of carbon in exhaust emissions, mCexh, for each test interval as follows:




Where:

MC = molar mass of carbon.

mCO2 = mass of CO2 over the test interval as determined in § 1065.650(c).

MCO2 = molar mass of carbon dioxide.

mCO = mass of CO over the test interval as determined in § 1065.650(c).

MCO = molar mass of carbon monoxide.

mTHC = mass of THC over the test interval as determined in § 1065.650(c).

MTHC = effective C1 molar mass of total hydrocarbon as defined in § 1065.1005(f)(2).


Example:

MC = 12.0107 g/mol

mCO2 = 4567 g

MCO2 = 44.0095 g/mol

mCO = 0.803 g

MCO = 28.0101 g/mol

mTHC = 0.537 g

MTHC = 13.875389 g/mol


(d) Carbon balance error quantities. Calculate carbon balance error quantities as follows:


(1) Calculate carbon mass absolute error, εaC, for a test interval as follows:




Where:

mCexh = mass of carbon in exhaust emissions over the test interval as determined in paragraph (d) of this section.

mCfluid = mass of carbon in all the carbon-carrying fluid streams flowing into the system over the test interval as determined in paragraph (a) of this section.

mCair = mass of carbon in the intake air flowing into the system over the test interval as determined in paragraph (b) of this section.


Example:

mCexh = 1247.2 g

mCfluid = 975.3 g

mCair = 278.6 g

ÒaC = 1247.2−975.3−278.6 = −6.7 g

(2) Calculate carbon mass rate absolute error, aCrate, for a test interval as follows:




Where:

t = duration of the test interval.


Example:

aC = −6.7 g

t = 1202.2 s = 0.3339 hr


(3) Calculate carbon mass relative error, rC, for a test interval as follows:




Example:

aC = −6.7 g

mCfliud = 975.3 g

mCair = 278.6 g


(4) Calculate composite carbon mass relative error, rCcomp, for a duty cycle with multiple test intervals as follows:


(i) Calculate rCcomp using the following equation:




Where:

i = an indexing variable that represents one test interval.

N = number of test intervals.

WF = weighting factor for the test interval as defined in the standard-setting part.

mCexh = mass of carbon in exhaust emissions over the test interval as determined in paragraph (c) of this section.

mCfluid = mass of carbon in all the carbon-carrying fluid streams that flowed into the system over the test interval as determined in paragraph (a) of this section.

mCair = mass of carbon in the intake air that flowed into the system over the test interval as determined in paragraph (b) of this section.

t = duration of the test interval. For duty cycles with multiple test intervals of a prescribed duration, such as cold-start and hot-start transient cycles, set t = 1 for all test intervals. For discrete-mode steady-state duty cycles with multiple test intervals of varying duration, set t equal to the actual duration of each test interval.

(ii) The following example illustrates calculation of rCcomp, for cold-start and hot-start transient cycles:


N = 2

WF1 = 1/7

WF2 = 6/7

mCexh1 = 1255.3 g

mCexh2 = 1247.2 g

mCfluid1 = 977.8 g

mCfluid2 = 975.3 g

mCair1 = 280.2 g

mCair2 = 278.6 g


(iii) The following example illustrates calculation of rCcomp for multiple test intervals with varying duration, such as discrete-mode steady-state duty cycles:


N = 2

WF1 = 0.85

WF2 = 0.15

mCexh1 = 2.873 g

mCexh2 = 0.125 g

mCfluid1 = 2.864 g

m